Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvtan Structured version   Unicode version

Theorem dvtan 28442
Description: Derivative of tangent. (Contributed by Brendan Leahy, 7-Aug-2018.)
Assertion
Ref Expression
dvtan  |-  ( CC 
_D  tan )  =  ( x  e.  dom  tan  |->  ( ( cos `  x
) ^ -u 2
) )

Proof of Theorem dvtan
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-tan 13357 . . . 4  |-  tan  =  ( x  e.  ( `' cos " ( CC 
\  { 0 } ) )  |->  ( ( sin `  x )  /  ( cos `  x
) ) )
2 cnvimass 5189 . . . . . . . . 9  |-  ( `' cos " ( CC 
\  { 0 } ) )  C_  dom  cos
3 cosf 13409 . . . . . . . . . 10  |-  cos : CC
--> CC
43fdmi 5564 . . . . . . . . 9  |-  dom  cos  =  CC
52, 4sseqtri 3388 . . . . . . . 8  |-  ( `' cos " ( CC 
\  { 0 } ) )  C_  CC
65sseli 3352 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  x  e.  CC )
76sincld 13414 . . . . . 6  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( sin `  x
)  e.  CC )
86coscld 13415 . . . . . 6  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( cos `  x
)  e.  CC )
9 ffn 5559 . . . . . . . 8  |-  ( cos
: CC --> CC  ->  cos 
Fn  CC )
10 elpreima 5823 . . . . . . . 8  |-  ( cos 
Fn  CC  ->  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  <-> 
( x  e.  CC  /\  ( cos `  x
)  e.  ( CC 
\  { 0 } ) ) ) )
113, 9, 10mp2b 10 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  <-> 
( x  e.  CC  /\  ( cos `  x
)  e.  ( CC 
\  { 0 } ) ) )
12 eldifsni 4001 . . . . . . . 8  |-  ( ( cos `  x )  e.  ( CC  \  { 0 } )  ->  ( cos `  x
)  =/=  0 )
1312adantl 466 . . . . . . 7  |-  ( ( x  e.  CC  /\  ( cos `  x )  e.  ( CC  \  { 0 } ) )  ->  ( cos `  x )  =/=  0
)
1411, 13sylbi 195 . . . . . 6  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( cos `  x
)  =/=  0 )
157, 8, 14divrecd 10110 . . . . 5  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( sin `  x )  /  ( cos `  x ) )  =  ( ( sin `  x )  x.  (
1  /  ( cos `  x ) ) ) )
1615mpteq2ia 4374 . . . 4  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) ) 
|->  ( ( sin `  x
)  /  ( cos `  x ) ) )  =  ( x  e.  ( `' cos " ( CC  \  { 0 } ) )  |->  ( ( sin `  x )  x.  ( 1  / 
( cos `  x
) ) ) )
171, 16eqtri 2463 . . 3  |-  tan  =  ( x  e.  ( `' cos " ( CC 
\  { 0 } ) )  |->  ( ( sin `  x )  x.  ( 1  / 
( cos `  x
) ) ) )
1817oveq2i 6102 . 2  |-  ( CC 
_D  tan )  =  ( CC  _D  ( x  e.  ( `' cos " ( CC  \  {
0 } ) ) 
|->  ( ( sin `  x
)  x.  ( 1  /  ( cos `  x
) ) ) ) )
19 cnelprrecn 9375 . . . . 5  |-  CC  e.  { RR ,  CC }
2019a1i 11 . . . 4  |-  ( T. 
->  CC  e.  { RR ,  CC } )
21 difss 3483 . . . . . . . . 9  |-  ( CC 
\  { 0 } )  C_  CC
22 imass2 5204 . . . . . . . . 9  |-  ( ( CC  \  { 0 } )  C_  CC  ->  ( `' cos " ( CC  \  { 0 } ) )  C_  ( `' cos " CC ) )
2321, 22ax-mp 5 . . . . . . . 8  |-  ( `' cos " ( CC 
\  { 0 } ) )  C_  ( `' cos " CC )
24 fimacnv 5835 . . . . . . . . 9  |-  ( cos
: CC --> CC  ->  ( `' cos " CC )  =  CC )
253, 24ax-mp 5 . . . . . . . 8  |-  ( `' cos " CC )  =  CC
2623, 25sseqtri 3388 . . . . . . 7  |-  ( `' cos " ( CC 
\  { 0 } ) )  C_  CC
2726sseli 3352 . . . . . 6  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  x  e.  CC )
2827sincld 13414 . . . . 5  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( sin `  x
)  e.  CC )
2928adantl 466 . . . 4  |-  ( ( T.  /\  x  e.  ( `' cos " ( CC  \  { 0 } ) ) )  -> 
( sin `  x
)  e.  CC )
308adantl 466 . . . 4  |-  ( ( T.  /\  x  e.  ( `' cos " ( CC  \  { 0 } ) ) )  -> 
( cos `  x
)  e.  CC )
31 sincl 13410 . . . . . 6  |-  ( x  e.  CC  ->  ( sin `  x )  e.  CC )
3231adantl 466 . . . . 5  |-  ( ( T.  /\  x  e.  CC )  ->  ( sin `  x )  e.  CC )
33 coscl 13411 . . . . . 6  |-  ( x  e.  CC  ->  ( cos `  x )  e.  CC )
3433adantl 466 . . . . 5  |-  ( ( T.  /\  x  e.  CC )  ->  ( cos `  x )  e.  CC )
35 dvsin 21454 . . . . . 6  |-  ( CC 
_D  sin )  =  cos
36 sinf 13408 . . . . . . . . 9  |-  sin : CC
--> CC
3736a1i 11 . . . . . . . 8  |-  ( T. 
->  sin : CC --> CC )
3837feqmptd 5744 . . . . . . 7  |-  ( T. 
->  sin  =  ( x  e.  CC  |->  ( sin `  x ) ) )
3938oveq2d 6107 . . . . . 6  |-  ( T. 
->  ( CC  _D  sin )  =  ( CC  _D  ( x  e.  CC  |->  ( sin `  x ) ) ) )
403a1i 11 . . . . . . 7  |-  ( T. 
->  cos : CC --> CC )
4140feqmptd 5744 . . . . . 6  |-  ( T. 
->  cos  =  ( x  e.  CC  |->  ( cos `  x ) ) )
4235, 39, 413eqtr3a 2499 . . . . 5  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( sin `  x ) ) )  =  ( x  e.  CC  |->  ( cos `  x ) ) )
4326a1i 11 . . . . 5  |-  ( T. 
->  ( `' cos " ( CC  \  { 0 } ) )  C_  CC )
44 eqid 2443 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
4544cnfldtopon 20362 . . . . . . 7  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
4645toponunii 18537 . . . . . . . 8  |-  CC  =  U. ( TopOpen ` fld )
4746restid 14372 . . . . . . 7  |-  ( (
TopOpen ` fld )  e.  (TopOn `  CC )  ->  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
4845, 47ax-mp 5 . . . . . 6  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
4948eqcomi 2447 . . . . 5  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
50 dvtanlem 28441 . . . . . 6  |-  ( `' cos " ( CC 
\  { 0 } ) )  e.  (
TopOpen ` fld )
5150a1i 11 . . . . 5  |-  ( T. 
->  ( `' cos " ( CC  \  { 0 } ) )  e.  (
TopOpen ` fld ) )
5220, 32, 34, 42, 43, 49, 44, 51dvmptres 21437 . . . 4  |-  ( T. 
->  ( CC  _D  (
x  e.  ( `' cos " ( CC 
\  { 0 } ) )  |->  ( sin `  x ) ) )  =  ( x  e.  ( `' cos " ( CC  \  { 0 } ) )  |->  ( cos `  x ) ) )
538, 14reccld 10100 . . . . 5  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( 1  / 
( cos `  x
) )  e.  CC )
5453adantl 466 . . . 4  |-  ( ( T.  /\  x  e.  ( `' cos " ( CC  \  { 0 } ) ) )  -> 
( 1  /  ( cos `  x ) )  e.  CC )
55 ovex 6116 . . . . 5  |-  ( -u ( 1  /  (
( cos `  x
) ^ 2 ) )  x.  -u ( sin `  x ) )  e.  _V
5655a1i 11 . . . 4  |-  ( ( T.  /\  x  e.  ( `' cos " ( CC  \  { 0 } ) ) )  -> 
( -u ( 1  / 
( ( cos `  x
) ^ 2 ) )  x.  -u ( sin `  x ) )  e.  _V )
5711simprbi 464 . . . . . 6  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( cos `  x
)  e.  ( CC 
\  { 0 } ) )
5857adantl 466 . . . . 5  |-  ( ( T.  /\  x  e.  ( `' cos " ( CC  \  { 0 } ) ) )  -> 
( cos `  x
)  e.  ( CC 
\  { 0 } ) )
5929negcld 9706 . . . . 5  |-  ( ( T.  /\  x  e.  ( `' cos " ( CC  \  { 0 } ) ) )  ->  -u ( sin `  x
)  e.  CC )
60 eldifi 3478 . . . . . . 7  |-  ( y  e.  ( CC  \  { 0 } )  ->  y  e.  CC )
61 eldifsni 4001 . . . . . . 7  |-  ( y  e.  ( CC  \  { 0 } )  ->  y  =/=  0
)
6260, 61reccld 10100 . . . . . 6  |-  ( y  e.  ( CC  \  { 0 } )  ->  ( 1  / 
y )  e.  CC )
6362adantl 466 . . . . 5  |-  ( ( T.  /\  y  e.  ( CC  \  {
0 } ) )  ->  ( 1  / 
y )  e.  CC )
64 negex 9608 . . . . . 6  |-  -u (
1  /  ( y ^ 2 ) )  e.  _V
6564a1i 11 . . . . 5  |-  ( ( T.  /\  y  e.  ( CC  \  {
0 } ) )  ->  -u ( 1  / 
( y ^ 2 ) )  e.  _V )
6632negcld 9706 . . . . . 6  |-  ( ( T.  /\  x  e.  CC )  ->  -u ( sin `  x )  e.  CC )
67 dvcos 21455 . . . . . . 7  |-  ( CC 
_D  cos )  =  ( x  e.  CC  |->  -u ( sin `  x ) )
6841oveq2d 6107 . . . . . . 7  |-  ( T. 
->  ( CC  _D  cos )  =  ( CC  _D  ( x  e.  CC  |->  ( cos `  x ) ) ) )
6967, 68syl5reqr 2490 . . . . . 6  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( cos `  x ) ) )  =  ( x  e.  CC  |->  -u ( sin `  x ) ) )
7020, 34, 66, 69, 43, 49, 44, 51dvmptres 21437 . . . . 5  |-  ( T. 
->  ( CC  _D  (
x  e.  ( `' cos " ( CC 
\  { 0 } ) )  |->  ( cos `  x ) ) )  =  ( x  e.  ( `' cos " ( CC  \  { 0 } ) )  |->  -u ( sin `  x ) ) )
71 ax-1cn 9340 . . . . . 6  |-  1  e.  CC
72 dvrec 21429 . . . . . 6  |-  ( 1  e.  CC  ->  ( CC  _D  ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) )  =  ( y  e.  ( CC 
\  { 0 } )  |->  -u ( 1  / 
( y ^ 2 ) ) ) )
7371, 72mp1i 12 . . . . 5  |-  ( T. 
->  ( CC  _D  (
y  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
y ) ) )  =  ( y  e.  ( CC  \  {
0 } )  |->  -u ( 1  /  (
y ^ 2 ) ) ) )
74 oveq2 6099 . . . . 5  |-  ( y  =  ( cos `  x
)  ->  ( 1  /  y )  =  ( 1  /  ( cos `  x ) ) )
75 oveq1 6098 . . . . . . 7  |-  ( y  =  ( cos `  x
)  ->  ( y ^ 2 )  =  ( ( cos `  x
) ^ 2 ) )
7675oveq2d 6107 . . . . . 6  |-  ( y  =  ( cos `  x
)  ->  ( 1  /  ( y ^
2 ) )  =  ( 1  /  (
( cos `  x
) ^ 2 ) ) )
7776negeqd 9604 . . . . 5  |-  ( y  =  ( cos `  x
)  ->  -u ( 1  /  ( y ^
2 ) )  = 
-u ( 1  / 
( ( cos `  x
) ^ 2 ) ) )
7820, 20, 58, 59, 63, 65, 70, 73, 74, 77dvmptco 21446 . . . 4  |-  ( T. 
->  ( CC  _D  (
x  e.  ( `' cos " ( CC 
\  { 0 } ) )  |->  ( 1  /  ( cos `  x
) ) ) )  =  ( x  e.  ( `' cos " ( CC  \  { 0 } ) )  |->  ( -u ( 1  /  (
( cos `  x
) ^ 2 ) )  x.  -u ( sin `  x ) ) ) )
7920, 29, 30, 52, 54, 56, 78dvmptmul 21435 . . 3  |-  ( T. 
->  ( CC  _D  (
x  e.  ( `' cos " ( CC 
\  { 0 } ) )  |->  ( ( sin `  x )  x.  ( 1  / 
( cos `  x
) ) ) ) )  =  ( x  e.  ( `' cos " ( CC  \  {
0 } ) ) 
|->  ( ( ( cos `  x )  x.  (
1  /  ( cos `  x ) ) )  +  ( ( -u ( 1  /  (
( cos `  x
) ^ 2 ) )  x.  -u ( sin `  x ) )  x.  ( sin `  x
) ) ) ) )
8079trud 1378 . 2  |-  ( CC 
_D  ( x  e.  ( `' cos " ( CC  \  { 0 } ) )  |->  ( ( sin `  x )  x.  ( 1  / 
( cos `  x
) ) ) ) )  =  ( x  e.  ( `' cos " ( CC  \  {
0 } ) ) 
|->  ( ( ( cos `  x )  x.  (
1  /  ( cos `  x ) ) )  +  ( ( -u ( 1  /  (
( cos `  x
) ^ 2 ) )  x.  -u ( sin `  x ) )  x.  ( sin `  x
) ) ) )
81 ovex 6116 . . . . 5  |-  ( ( sin `  x )  /  ( cos `  x
) )  e.  _V
8281, 1dmmpti 5540 . . . 4  |-  dom  tan  =  ( `' cos " ( CC  \  {
0 } ) )
8382eqcomi 2447 . . 3  |-  ( `' cos " ( CC 
\  { 0 } ) )  =  dom  tan
848sqcld 12006 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( cos `  x ) ^ 2 )  e.  CC )
857sqcld 12006 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( sin `  x ) ^ 2 )  e.  CC )
86 sqne0 11932 . . . . . . . . 9  |-  ( ( cos `  x )  e.  CC  ->  (
( ( cos `  x
) ^ 2 )  =/=  0  <->  ( cos `  x )  =/=  0
) )
878, 86syl 16 . . . . . . . 8  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( cos `  x ) ^ 2 )  =/=  0  <->  ( cos `  x
)  =/=  0 ) )
8814, 87mpbird 232 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( cos `  x ) ^ 2 )  =/=  0 )
8984, 85, 84, 88divdird 10145 . . . . . 6  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( ( cos `  x
) ^ 2 )  +  ( ( sin `  x ) ^ 2 ) )  /  (
( cos `  x
) ^ 2 ) )  =  ( ( ( ( cos `  x
) ^ 2 )  /  ( ( cos `  x ) ^ 2 ) )  +  ( ( ( sin `  x
) ^ 2 )  /  ( ( cos `  x ) ^ 2 ) ) ) )
9084, 85addcomd 9571 . . . . . . . 8  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( cos `  x ) ^ 2 )  +  ( ( sin `  x
) ^ 2 ) )  =  ( ( ( sin `  x
) ^ 2 )  +  ( ( cos `  x ) ^ 2 ) ) )
91 sincossq 13460 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
( ( sin `  x
) ^ 2 )  +  ( ( cos `  x ) ^ 2 ) )  =  1 )
926, 91syl 16 . . . . . . . 8  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( sin `  x ) ^ 2 )  +  ( ( cos `  x
) ^ 2 ) )  =  1 )
9390, 92eqtrd 2475 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( cos `  x ) ^ 2 )  +  ( ( sin `  x
) ^ 2 ) )  =  1 )
9493oveq1d 6106 . . . . . 6  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( ( cos `  x
) ^ 2 )  +  ( ( sin `  x ) ^ 2 ) )  /  (
( cos `  x
) ^ 2 ) )  =  ( 1  /  ( ( cos `  x ) ^ 2 ) ) )
9589, 94eqtr3d 2477 . . . . 5  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( ( cos `  x
) ^ 2 )  /  ( ( cos `  x ) ^ 2 ) )  +  ( ( ( sin `  x
) ^ 2 )  /  ( ( cos `  x ) ^ 2 ) ) )  =  ( 1  /  (
( cos `  x
) ^ 2 ) ) )
968, 14recidd 10102 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( cos `  x )  x.  (
1  /  ( cos `  x ) ) )  =  1 )
9784, 88dividd 10105 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( cos `  x ) ^ 2 )  / 
( ( cos `  x
) ^ 2 ) )  =  1 )
9896, 97eqtr4d 2478 . . . . . 6  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( cos `  x )  x.  (
1  /  ( cos `  x ) ) )  =  ( ( ( cos `  x ) ^ 2 )  / 
( ( cos `  x
) ^ 2 ) ) )
997, 7, 84, 88div23d 10144 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( sin `  x )  x.  ( sin `  x
) )  /  (
( cos `  x
) ^ 2 ) )  =  ( ( ( sin `  x
)  /  ( ( cos `  x ) ^ 2 ) )  x.  ( sin `  x
) ) )
1007sqvald 12005 . . . . . . . 8  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( sin `  x ) ^ 2 )  =  ( ( sin `  x )  x.  ( sin `  x
) ) )
101100oveq1d 6106 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( sin `  x ) ^ 2 )  / 
( ( cos `  x
) ^ 2 ) )  =  ( ( ( sin `  x
)  x.  ( sin `  x ) )  / 
( ( cos `  x
) ^ 2 ) ) )
10284, 88reccld 10100 . . . . . . . . . 10  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( 1  / 
( ( cos `  x
) ^ 2 ) )  e.  CC )
103102, 7mul2negd 9799 . . . . . . . . 9  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( -u (
1  /  ( ( cos `  x ) ^ 2 ) )  x.  -u ( sin `  x
) )  =  ( ( 1  /  (
( cos `  x
) ^ 2 ) )  x.  ( sin `  x ) ) )
1047, 84, 88divrec2d 10111 . . . . . . . . 9  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( sin `  x )  /  (
( cos `  x
) ^ 2 ) )  =  ( ( 1  /  ( ( cos `  x ) ^ 2 ) )  x.  ( sin `  x
) ) )
105103, 104eqtr4d 2478 . . . . . . . 8  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( -u (
1  /  ( ( cos `  x ) ^ 2 ) )  x.  -u ( sin `  x
) )  =  ( ( sin `  x
)  /  ( ( cos `  x ) ^ 2 ) ) )
106105oveq1d 6106 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( -u ( 1  /  (
( cos `  x
) ^ 2 ) )  x.  -u ( sin `  x ) )  x.  ( sin `  x
) )  =  ( ( ( sin `  x
)  /  ( ( cos `  x ) ^ 2 ) )  x.  ( sin `  x
) ) )
10799, 101, 1063eqtr4rd 2486 . . . . . 6  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( -u ( 1  /  (
( cos `  x
) ^ 2 ) )  x.  -u ( sin `  x ) )  x.  ( sin `  x
) )  =  ( ( ( sin `  x
) ^ 2 )  /  ( ( cos `  x ) ^ 2 ) ) )
10898, 107oveq12d 6109 . . . . 5  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( cos `  x )  x.  ( 1  / 
( cos `  x
) ) )  +  ( ( -u (
1  /  ( ( cos `  x ) ^ 2 ) )  x.  -u ( sin `  x
) )  x.  ( sin `  x ) ) )  =  ( ( ( ( cos `  x
) ^ 2 )  /  ( ( cos `  x ) ^ 2 ) )  +  ( ( ( sin `  x
) ^ 2 )  /  ( ( cos `  x ) ^ 2 ) ) ) )
109 2nn0 10596 . . . . . 6  |-  2  e.  NN0
110 expneg 11873 . . . . . 6  |-  ( ( ( cos `  x
)  e.  CC  /\  2  e.  NN0 )  -> 
( ( cos `  x
) ^ -u 2
)  =  ( 1  /  ( ( cos `  x ) ^ 2 ) ) )
1118, 109, 110sylancl 662 . . . . 5  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( cos `  x ) ^ -u 2
)  =  ( 1  /  ( ( cos `  x ) ^ 2 ) ) )
11295, 108, 1113eqtr4d 2485 . . . 4  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( cos `  x )  x.  ( 1  / 
( cos `  x
) ) )  +  ( ( -u (
1  /  ( ( cos `  x ) ^ 2 ) )  x.  -u ( sin `  x
) )  x.  ( sin `  x ) ) )  =  ( ( cos `  x ) ^ -u 2 ) )
113112rgen 2781 . . 3  |-  A. x  e.  ( `' cos " ( CC  \  { 0 } ) ) ( ( ( cos `  x
)  x.  ( 1  /  ( cos `  x
) ) )  +  ( ( -u (
1  /  ( ( cos `  x ) ^ 2 ) )  x.  -u ( sin `  x
) )  x.  ( sin `  x ) ) )  =  ( ( cos `  x ) ^ -u 2 )
114 mpteq12 4371 . . 3  |-  ( ( ( `' cos " ( CC  \  { 0 } ) )  =  dom  tan 
/\  A. x  e.  ( `' cos " ( CC 
\  { 0 } ) ) ( ( ( cos `  x
)  x.  ( 1  /  ( cos `  x
) ) )  +  ( ( -u (
1  /  ( ( cos `  x ) ^ 2 ) )  x.  -u ( sin `  x
) )  x.  ( sin `  x ) ) )  =  ( ( cos `  x ) ^ -u 2 ) )  ->  ( x  e.  ( `' cos " ( CC  \  { 0 } ) )  |->  ( ( ( cos `  x
)  x.  ( 1  /  ( cos `  x
) ) )  +  ( ( -u (
1  /  ( ( cos `  x ) ^ 2 ) )  x.  -u ( sin `  x
) )  x.  ( sin `  x ) ) ) )  =  ( x  e.  dom  tan  |->  ( ( cos `  x
) ^ -u 2
) ) )
11583, 113, 114mp2an 672 . 2  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) ) 
|->  ( ( ( cos `  x )  x.  (
1  /  ( cos `  x ) ) )  +  ( ( -u ( 1  /  (
( cos `  x
) ^ 2 ) )  x.  -u ( sin `  x ) )  x.  ( sin `  x
) ) ) )  =  ( x  e. 
dom  tan  |->  ( ( cos `  x ) ^ -u 2
) )
11618, 80, 1153eqtri 2467 1  |-  ( CC 
_D  tan )  =  ( x  e.  dom  tan  |->  ( ( cos `  x
) ^ -u 2
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369   T. wtru 1370    e. wcel 1756    =/= wne 2606   A.wral 2715   _Vcvv 2972    \ cdif 3325    C_ wss 3328   {csn 3877   {cpr 3879    e. cmpt 4350   `'ccnv 4839   dom cdm 4840   "cima 4843    Fn wfn 5413   -->wf 5414   ` cfv 5418  (class class class)co 6091   CCcc 9280   RRcr 9281   0cc0 9282   1c1 9283    + caddc 9285    x. cmul 9287   -ucneg 9596    / cdiv 9993   2c2 10371   NN0cn0 10579   ^cexp 11865   sincsin 13349   cosccos 13350   tanctan 13351   ↾t crest 14359   TopOpenctopn 14360  ℂfldccnfld 17818  TopOnctopon 18499    _D cdv 21338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360  ax-addf 9361  ax-mulf 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-of 6320  df-om 6477  df-1st 6577  df-2nd 6578  df-supp 6691  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-map 7216  df-pm 7217  df-ixp 7264  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fsupp 7621  df-fi 7661  df-sup 7691  df-oi 7724  df-card 8109  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-q 10954  df-rp 10992  df-xneg 11089  df-xadd 11090  df-xmul 11091  df-ioo 11304  df-ioc 11305  df-ico 11306  df-icc 11307  df-fz 11438  df-fzo 11549  df-fl 11642  df-mod 11709  df-seq 11807  df-exp 11866  df-fac 12052  df-bc 12079  df-hash 12104  df-shft 12556  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-limsup 12949  df-clim 12966  df-rlim 12967  df-sum 13164  df-ef 13353  df-sin 13355  df-cos 13356  df-tan 13357  df-pi 13358  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-starv 14253  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-hom 14262  df-cco 14263  df-rest 14361  df-topn 14362  df-0g 14380  df-gsum 14381  df-topgen 14382  df-pt 14383  df-prds 14386  df-xrs 14440  df-qtop 14445  df-imas 14446  df-xps 14448  df-mre 14524  df-mrc 14525  df-acs 14527  df-mnd 15415  df-submnd 15465  df-mulg 15548  df-cntz 15835  df-cmn 16279  df-psmet 17809  df-xmet 17810  df-met 17811  df-bl 17812  df-mopn 17813  df-fbas 17814  df-fg 17815  df-cnfld 17819  df-top 18503  df-bases 18505  df-topon 18506  df-topsp 18507  df-cld 18623  df-ntr 18624  df-cls 18625  df-nei 18702  df-lp 18740  df-perf 18741  df-cn 18831  df-cnp 18832  df-t1 18918  df-haus 18919  df-tx 19135  df-hmeo 19328  df-fil 19419  df-fm 19511  df-flim 19512  df-flf 19513  df-xms 19895  df-ms 19896  df-tms 19897  df-cncf 20454  df-limc 21341  df-dv 21342
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator