Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvtan Structured version   Unicode version

Theorem dvtan 29658
Description: Derivative of tangent. (Contributed by Brendan Leahy, 7-Aug-2018.)
Assertion
Ref Expression
dvtan  |-  ( CC 
_D  tan )  =  ( x  e.  dom  tan  |->  ( ( cos `  x
) ^ -u 2
) )

Proof of Theorem dvtan
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-tan 13668 . . . 4  |-  tan  =  ( x  e.  ( `' cos " ( CC 
\  { 0 } ) )  |->  ( ( sin `  x )  /  ( cos `  x
) ) )
2 cnvimass 5356 . . . . . . . . 9  |-  ( `' cos " ( CC 
\  { 0 } ) )  C_  dom  cos
3 cosf 13720 . . . . . . . . . 10  |-  cos : CC
--> CC
43fdmi 5735 . . . . . . . . 9  |-  dom  cos  =  CC
52, 4sseqtri 3536 . . . . . . . 8  |-  ( `' cos " ( CC 
\  { 0 } ) )  C_  CC
65sseli 3500 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  x  e.  CC )
76sincld 13725 . . . . . 6  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( sin `  x
)  e.  CC )
86coscld 13726 . . . . . 6  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( cos `  x
)  e.  CC )
9 ffn 5730 . . . . . . . 8  |-  ( cos
: CC --> CC  ->  cos 
Fn  CC )
10 elpreima 6000 . . . . . . . 8  |-  ( cos 
Fn  CC  ->  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  <-> 
( x  e.  CC  /\  ( cos `  x
)  e.  ( CC 
\  { 0 } ) ) ) )
113, 9, 10mp2b 10 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  <-> 
( x  e.  CC  /\  ( cos `  x
)  e.  ( CC 
\  { 0 } ) ) )
12 eldifsni 4153 . . . . . . . 8  |-  ( ( cos `  x )  e.  ( CC  \  { 0 } )  ->  ( cos `  x
)  =/=  0 )
1312adantl 466 . . . . . . 7  |-  ( ( x  e.  CC  /\  ( cos `  x )  e.  ( CC  \  { 0 } ) )  ->  ( cos `  x )  =/=  0
)
1411, 13sylbi 195 . . . . . 6  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( cos `  x
)  =/=  0 )
157, 8, 14divrecd 10322 . . . . 5  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( sin `  x )  /  ( cos `  x ) )  =  ( ( sin `  x )  x.  (
1  /  ( cos `  x ) ) ) )
1615mpteq2ia 4529 . . . 4  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) ) 
|->  ( ( sin `  x
)  /  ( cos `  x ) ) )  =  ( x  e.  ( `' cos " ( CC  \  { 0 } ) )  |->  ( ( sin `  x )  x.  ( 1  / 
( cos `  x
) ) ) )
171, 16eqtri 2496 . . 3  |-  tan  =  ( x  e.  ( `' cos " ( CC 
\  { 0 } ) )  |->  ( ( sin `  x )  x.  ( 1  / 
( cos `  x
) ) ) )
1817oveq2i 6294 . 2  |-  ( CC 
_D  tan )  =  ( CC  _D  ( x  e.  ( `' cos " ( CC  \  {
0 } ) ) 
|->  ( ( sin `  x
)  x.  ( 1  /  ( cos `  x
) ) ) ) )
19 cnelprrecn 9584 . . . . 5  |-  CC  e.  { RR ,  CC }
2019a1i 11 . . . 4  |-  ( T. 
->  CC  e.  { RR ,  CC } )
21 difss 3631 . . . . . . . . 9  |-  ( CC 
\  { 0 } )  C_  CC
22 imass2 5371 . . . . . . . . 9  |-  ( ( CC  \  { 0 } )  C_  CC  ->  ( `' cos " ( CC  \  { 0 } ) )  C_  ( `' cos " CC ) )
2321, 22ax-mp 5 . . . . . . . 8  |-  ( `' cos " ( CC 
\  { 0 } ) )  C_  ( `' cos " CC )
24 fimacnv 6012 . . . . . . . . 9  |-  ( cos
: CC --> CC  ->  ( `' cos " CC )  =  CC )
253, 24ax-mp 5 . . . . . . . 8  |-  ( `' cos " CC )  =  CC
2623, 25sseqtri 3536 . . . . . . 7  |-  ( `' cos " ( CC 
\  { 0 } ) )  C_  CC
2726sseli 3500 . . . . . 6  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  x  e.  CC )
2827sincld 13725 . . . . 5  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( sin `  x
)  e.  CC )
2928adantl 466 . . . 4  |-  ( ( T.  /\  x  e.  ( `' cos " ( CC  \  { 0 } ) ) )  -> 
( sin `  x
)  e.  CC )
308adantl 466 . . . 4  |-  ( ( T.  /\  x  e.  ( `' cos " ( CC  \  { 0 } ) ) )  -> 
( cos `  x
)  e.  CC )
31 sincl 13721 . . . . . 6  |-  ( x  e.  CC  ->  ( sin `  x )  e.  CC )
3231adantl 466 . . . . 5  |-  ( ( T.  /\  x  e.  CC )  ->  ( sin `  x )  e.  CC )
33 coscl 13722 . . . . . 6  |-  ( x  e.  CC  ->  ( cos `  x )  e.  CC )
3433adantl 466 . . . . 5  |-  ( ( T.  /\  x  e.  CC )  ->  ( cos `  x )  e.  CC )
35 dvsin 22134 . . . . . 6  |-  ( CC 
_D  sin )  =  cos
36 sinf 13719 . . . . . . . . 9  |-  sin : CC
--> CC
3736a1i 11 . . . . . . . 8  |-  ( T. 
->  sin : CC --> CC )
3837feqmptd 5919 . . . . . . 7  |-  ( T. 
->  sin  =  ( x  e.  CC  |->  ( sin `  x ) ) )
3938oveq2d 6299 . . . . . 6  |-  ( T. 
->  ( CC  _D  sin )  =  ( CC  _D  ( x  e.  CC  |->  ( sin `  x ) ) ) )
403a1i 11 . . . . . . 7  |-  ( T. 
->  cos : CC --> CC )
4140feqmptd 5919 . . . . . 6  |-  ( T. 
->  cos  =  ( x  e.  CC  |->  ( cos `  x ) ) )
4235, 39, 413eqtr3a 2532 . . . . 5  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( sin `  x ) ) )  =  ( x  e.  CC  |->  ( cos `  x ) ) )
4326a1i 11 . . . . 5  |-  ( T. 
->  ( `' cos " ( CC  \  { 0 } ) )  C_  CC )
44 eqid 2467 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
4544cnfldtopon 21041 . . . . . . 7  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
4645toponunii 19216 . . . . . . . 8  |-  CC  =  U. ( TopOpen ` fld )
4746restid 14688 . . . . . . 7  |-  ( (
TopOpen ` fld )  e.  (TopOn `  CC )  ->  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
4845, 47ax-mp 5 . . . . . 6  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
4948eqcomi 2480 . . . . 5  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
50 dvtanlem 29657 . . . . . 6  |-  ( `' cos " ( CC 
\  { 0 } ) )  e.  (
TopOpen ` fld )
5150a1i 11 . . . . 5  |-  ( T. 
->  ( `' cos " ( CC  \  { 0 } ) )  e.  (
TopOpen ` fld ) )
5220, 32, 34, 42, 43, 49, 44, 51dvmptres 22117 . . . 4  |-  ( T. 
->  ( CC  _D  (
x  e.  ( `' cos " ( CC 
\  { 0 } ) )  |->  ( sin `  x ) ) )  =  ( x  e.  ( `' cos " ( CC  \  { 0 } ) )  |->  ( cos `  x ) ) )
538, 14reccld 10312 . . . . 5  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( 1  / 
( cos `  x
) )  e.  CC )
5453adantl 466 . . . 4  |-  ( ( T.  /\  x  e.  ( `' cos " ( CC  \  { 0 } ) ) )  -> 
( 1  /  ( cos `  x ) )  e.  CC )
55 ovex 6308 . . . . 5  |-  ( -u ( 1  /  (
( cos `  x
) ^ 2 ) )  x.  -u ( sin `  x ) )  e.  _V
5655a1i 11 . . . 4  |-  ( ( T.  /\  x  e.  ( `' cos " ( CC  \  { 0 } ) ) )  -> 
( -u ( 1  / 
( ( cos `  x
) ^ 2 ) )  x.  -u ( sin `  x ) )  e.  _V )
5711simprbi 464 . . . . . 6  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( cos `  x
)  e.  ( CC 
\  { 0 } ) )
5857adantl 466 . . . . 5  |-  ( ( T.  /\  x  e.  ( `' cos " ( CC  \  { 0 } ) ) )  -> 
( cos `  x
)  e.  ( CC 
\  { 0 } ) )
5929negcld 9916 . . . . 5  |-  ( ( T.  /\  x  e.  ( `' cos " ( CC  \  { 0 } ) ) )  ->  -u ( sin `  x
)  e.  CC )
60 eldifi 3626 . . . . . . 7  |-  ( y  e.  ( CC  \  { 0 } )  ->  y  e.  CC )
61 eldifsni 4153 . . . . . . 7  |-  ( y  e.  ( CC  \  { 0 } )  ->  y  =/=  0
)
6260, 61reccld 10312 . . . . . 6  |-  ( y  e.  ( CC  \  { 0 } )  ->  ( 1  / 
y )  e.  CC )
6362adantl 466 . . . . 5  |-  ( ( T.  /\  y  e.  ( CC  \  {
0 } ) )  ->  ( 1  / 
y )  e.  CC )
64 negex 9817 . . . . . 6  |-  -u (
1  /  ( y ^ 2 ) )  e.  _V
6564a1i 11 . . . . 5  |-  ( ( T.  /\  y  e.  ( CC  \  {
0 } ) )  ->  -u ( 1  / 
( y ^ 2 ) )  e.  _V )
6632negcld 9916 . . . . . 6  |-  ( ( T.  /\  x  e.  CC )  ->  -u ( sin `  x )  e.  CC )
67 dvcos 22135 . . . . . . 7  |-  ( CC 
_D  cos )  =  ( x  e.  CC  |->  -u ( sin `  x ) )
6841oveq2d 6299 . . . . . . 7  |-  ( T. 
->  ( CC  _D  cos )  =  ( CC  _D  ( x  e.  CC  |->  ( cos `  x ) ) ) )
6967, 68syl5reqr 2523 . . . . . 6  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( cos `  x ) ) )  =  ( x  e.  CC  |->  -u ( sin `  x ) ) )
7020, 34, 66, 69, 43, 49, 44, 51dvmptres 22117 . . . . 5  |-  ( T. 
->  ( CC  _D  (
x  e.  ( `' cos " ( CC 
\  { 0 } ) )  |->  ( cos `  x ) ) )  =  ( x  e.  ( `' cos " ( CC  \  { 0 } ) )  |->  -u ( sin `  x ) ) )
71 ax-1cn 9549 . . . . . 6  |-  1  e.  CC
72 dvrec 22109 . . . . . 6  |-  ( 1  e.  CC  ->  ( CC  _D  ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) )  =  ( y  e.  ( CC 
\  { 0 } )  |->  -u ( 1  / 
( y ^ 2 ) ) ) )
7371, 72mp1i 12 . . . . 5  |-  ( T. 
->  ( CC  _D  (
y  e.  ( CC 
\  { 0 } )  |->  ( 1  / 
y ) ) )  =  ( y  e.  ( CC  \  {
0 } )  |->  -u ( 1  /  (
y ^ 2 ) ) ) )
74 oveq2 6291 . . . . 5  |-  ( y  =  ( cos `  x
)  ->  ( 1  /  y )  =  ( 1  /  ( cos `  x ) ) )
75 oveq1 6290 . . . . . . 7  |-  ( y  =  ( cos `  x
)  ->  ( y ^ 2 )  =  ( ( cos `  x
) ^ 2 ) )
7675oveq2d 6299 . . . . . 6  |-  ( y  =  ( cos `  x
)  ->  ( 1  /  ( y ^
2 ) )  =  ( 1  /  (
( cos `  x
) ^ 2 ) ) )
7776negeqd 9813 . . . . 5  |-  ( y  =  ( cos `  x
)  ->  -u ( 1  /  ( y ^
2 ) )  = 
-u ( 1  / 
( ( cos `  x
) ^ 2 ) ) )
7820, 20, 58, 59, 63, 65, 70, 73, 74, 77dvmptco 22126 . . . 4  |-  ( T. 
->  ( CC  _D  (
x  e.  ( `' cos " ( CC 
\  { 0 } ) )  |->  ( 1  /  ( cos `  x
) ) ) )  =  ( x  e.  ( `' cos " ( CC  \  { 0 } ) )  |->  ( -u ( 1  /  (
( cos `  x
) ^ 2 ) )  x.  -u ( sin `  x ) ) ) )
7920, 29, 30, 52, 54, 56, 78dvmptmul 22115 . . 3  |-  ( T. 
->  ( CC  _D  (
x  e.  ( `' cos " ( CC 
\  { 0 } ) )  |->  ( ( sin `  x )  x.  ( 1  / 
( cos `  x
) ) ) ) )  =  ( x  e.  ( `' cos " ( CC  \  {
0 } ) ) 
|->  ( ( ( cos `  x )  x.  (
1  /  ( cos `  x ) ) )  +  ( ( -u ( 1  /  (
( cos `  x
) ^ 2 ) )  x.  -u ( sin `  x ) )  x.  ( sin `  x
) ) ) ) )
8079trud 1388 . 2  |-  ( CC 
_D  ( x  e.  ( `' cos " ( CC  \  { 0 } ) )  |->  ( ( sin `  x )  x.  ( 1  / 
( cos `  x
) ) ) ) )  =  ( x  e.  ( `' cos " ( CC  \  {
0 } ) ) 
|->  ( ( ( cos `  x )  x.  (
1  /  ( cos `  x ) ) )  +  ( ( -u ( 1  /  (
( cos `  x
) ^ 2 ) )  x.  -u ( sin `  x ) )  x.  ( sin `  x
) ) ) )
81 ovex 6308 . . . . 5  |-  ( ( sin `  x )  /  ( cos `  x
) )  e.  _V
8281, 1dmmpti 5709 . . . 4  |-  dom  tan  =  ( `' cos " ( CC  \  {
0 } ) )
8382eqcomi 2480 . . 3  |-  ( `' cos " ( CC 
\  { 0 } ) )  =  dom  tan
848sqcld 12275 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( cos `  x ) ^ 2 )  e.  CC )
857sqcld 12275 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( sin `  x ) ^ 2 )  e.  CC )
86 sqne0 12201 . . . . . . . . 9  |-  ( ( cos `  x )  e.  CC  ->  (
( ( cos `  x
) ^ 2 )  =/=  0  <->  ( cos `  x )  =/=  0
) )
878, 86syl 16 . . . . . . . 8  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( cos `  x ) ^ 2 )  =/=  0  <->  ( cos `  x
)  =/=  0 ) )
8814, 87mpbird 232 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( cos `  x ) ^ 2 )  =/=  0 )
8984, 85, 84, 88divdird 10357 . . . . . 6  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( ( cos `  x
) ^ 2 )  +  ( ( sin `  x ) ^ 2 ) )  /  (
( cos `  x
) ^ 2 ) )  =  ( ( ( ( cos `  x
) ^ 2 )  /  ( ( cos `  x ) ^ 2 ) )  +  ( ( ( sin `  x
) ^ 2 )  /  ( ( cos `  x ) ^ 2 ) ) ) )
9084, 85addcomd 9780 . . . . . . . 8  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( cos `  x ) ^ 2 )  +  ( ( sin `  x
) ^ 2 ) )  =  ( ( ( sin `  x
) ^ 2 )  +  ( ( cos `  x ) ^ 2 ) ) )
91 sincossq 13771 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
( ( sin `  x
) ^ 2 )  +  ( ( cos `  x ) ^ 2 ) )  =  1 )
926, 91syl 16 . . . . . . . 8  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( sin `  x ) ^ 2 )  +  ( ( cos `  x
) ^ 2 ) )  =  1 )
9390, 92eqtrd 2508 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( cos `  x ) ^ 2 )  +  ( ( sin `  x
) ^ 2 ) )  =  1 )
9493oveq1d 6298 . . . . . 6  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( ( cos `  x
) ^ 2 )  +  ( ( sin `  x ) ^ 2 ) )  /  (
( cos `  x
) ^ 2 ) )  =  ( 1  /  ( ( cos `  x ) ^ 2 ) ) )
9589, 94eqtr3d 2510 . . . . 5  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( ( cos `  x
) ^ 2 )  /  ( ( cos `  x ) ^ 2 ) )  +  ( ( ( sin `  x
) ^ 2 )  /  ( ( cos `  x ) ^ 2 ) ) )  =  ( 1  /  (
( cos `  x
) ^ 2 ) ) )
968, 14recidd 10314 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( cos `  x )  x.  (
1  /  ( cos `  x ) ) )  =  1 )
9784, 88dividd 10317 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( cos `  x ) ^ 2 )  / 
( ( cos `  x
) ^ 2 ) )  =  1 )
9896, 97eqtr4d 2511 . . . . . 6  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( cos `  x )  x.  (
1  /  ( cos `  x ) ) )  =  ( ( ( cos `  x ) ^ 2 )  / 
( ( cos `  x
) ^ 2 ) ) )
997, 7, 84, 88div23d 10356 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( sin `  x )  x.  ( sin `  x
) )  /  (
( cos `  x
) ^ 2 ) )  =  ( ( ( sin `  x
)  /  ( ( cos `  x ) ^ 2 ) )  x.  ( sin `  x
) ) )
1007sqvald 12274 . . . . . . . 8  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( sin `  x ) ^ 2 )  =  ( ( sin `  x )  x.  ( sin `  x
) ) )
101100oveq1d 6298 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( sin `  x ) ^ 2 )  / 
( ( cos `  x
) ^ 2 ) )  =  ( ( ( sin `  x
)  x.  ( sin `  x ) )  / 
( ( cos `  x
) ^ 2 ) ) )
10284, 88reccld 10312 . . . . . . . . . 10  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( 1  / 
( ( cos `  x
) ^ 2 ) )  e.  CC )
103102, 7mul2negd 10010 . . . . . . . . 9  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( -u (
1  /  ( ( cos `  x ) ^ 2 ) )  x.  -u ( sin `  x
) )  =  ( ( 1  /  (
( cos `  x
) ^ 2 ) )  x.  ( sin `  x ) ) )
1047, 84, 88divrec2d 10323 . . . . . . . . 9  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( sin `  x )  /  (
( cos `  x
) ^ 2 ) )  =  ( ( 1  /  ( ( cos `  x ) ^ 2 ) )  x.  ( sin `  x
) ) )
105103, 104eqtr4d 2511 . . . . . . . 8  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( -u (
1  /  ( ( cos `  x ) ^ 2 ) )  x.  -u ( sin `  x
) )  =  ( ( sin `  x
)  /  ( ( cos `  x ) ^ 2 ) ) )
106105oveq1d 6298 . . . . . . 7  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( -u ( 1  /  (
( cos `  x
) ^ 2 ) )  x.  -u ( sin `  x ) )  x.  ( sin `  x
) )  =  ( ( ( sin `  x
)  /  ( ( cos `  x ) ^ 2 ) )  x.  ( sin `  x
) ) )
10799, 101, 1063eqtr4rd 2519 . . . . . 6  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( -u ( 1  /  (
( cos `  x
) ^ 2 ) )  x.  -u ( sin `  x ) )  x.  ( sin `  x
) )  =  ( ( ( sin `  x
) ^ 2 )  /  ( ( cos `  x ) ^ 2 ) ) )
10898, 107oveq12d 6301 . . . . 5  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( cos `  x )  x.  ( 1  / 
( cos `  x
) ) )  +  ( ( -u (
1  /  ( ( cos `  x ) ^ 2 ) )  x.  -u ( sin `  x
) )  x.  ( sin `  x ) ) )  =  ( ( ( ( cos `  x
) ^ 2 )  /  ( ( cos `  x ) ^ 2 ) )  +  ( ( ( sin `  x
) ^ 2 )  /  ( ( cos `  x ) ^ 2 ) ) ) )
109 2nn0 10811 . . . . . 6  |-  2  e.  NN0
110 expneg 12141 . . . . . 6  |-  ( ( ( cos `  x
)  e.  CC  /\  2  e.  NN0 )  -> 
( ( cos `  x
) ^ -u 2
)  =  ( 1  /  ( ( cos `  x ) ^ 2 ) ) )
1118, 109, 110sylancl 662 . . . . 5  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( cos `  x ) ^ -u 2
)  =  ( 1  /  ( ( cos `  x ) ^ 2 ) ) )
11295, 108, 1113eqtr4d 2518 . . . 4  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) )  ->  ( ( ( cos `  x )  x.  ( 1  / 
( cos `  x
) ) )  +  ( ( -u (
1  /  ( ( cos `  x ) ^ 2 ) )  x.  -u ( sin `  x
) )  x.  ( sin `  x ) ) )  =  ( ( cos `  x ) ^ -u 2 ) )
113112rgen 2824 . . 3  |-  A. x  e.  ( `' cos " ( CC  \  { 0 } ) ) ( ( ( cos `  x
)  x.  ( 1  /  ( cos `  x
) ) )  +  ( ( -u (
1  /  ( ( cos `  x ) ^ 2 ) )  x.  -u ( sin `  x
) )  x.  ( sin `  x ) ) )  =  ( ( cos `  x ) ^ -u 2 )
114 mpteq12 4526 . . 3  |-  ( ( ( `' cos " ( CC  \  { 0 } ) )  =  dom  tan 
/\  A. x  e.  ( `' cos " ( CC 
\  { 0 } ) ) ( ( ( cos `  x
)  x.  ( 1  /  ( cos `  x
) ) )  +  ( ( -u (
1  /  ( ( cos `  x ) ^ 2 ) )  x.  -u ( sin `  x
) )  x.  ( sin `  x ) ) )  =  ( ( cos `  x ) ^ -u 2 ) )  ->  ( x  e.  ( `' cos " ( CC  \  { 0 } ) )  |->  ( ( ( cos `  x
)  x.  ( 1  /  ( cos `  x
) ) )  +  ( ( -u (
1  /  ( ( cos `  x ) ^ 2 ) )  x.  -u ( sin `  x
) )  x.  ( sin `  x ) ) ) )  =  ( x  e.  dom  tan  |->  ( ( cos `  x
) ^ -u 2
) ) )
11583, 113, 114mp2an 672 . 2  |-  ( x  e.  ( `' cos " ( CC  \  {
0 } ) ) 
|->  ( ( ( cos `  x )  x.  (
1  /  ( cos `  x ) ) )  +  ( ( -u ( 1  /  (
( cos `  x
) ^ 2 ) )  x.  -u ( sin `  x ) )  x.  ( sin `  x
) ) ) )  =  ( x  e. 
dom  tan  |->  ( ( cos `  x ) ^ -u 2
) )
11618, 80, 1153eqtri 2500 1  |-  ( CC 
_D  tan )  =  ( x  e.  dom  tan  |->  ( ( cos `  x
) ^ -u 2
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1379   T. wtru 1380    e. wcel 1767    =/= wne 2662   A.wral 2814   _Vcvv 3113    \ cdif 3473    C_ wss 3476   {csn 4027   {cpr 4029    |-> cmpt 4505   `'ccnv 4998   dom cdm 4999   "cima 5002    Fn wfn 5582   -->wf 5583   ` cfv 5587  (class class class)co 6283   CCcc 9489   RRcr 9490   0cc0 9491   1c1 9492    + caddc 9494    x. cmul 9496   -ucneg 9805    / cdiv 10205   2c2 10584   NN0cn0 10794   ^cexp 12133   sincsin 13660   cosccos 13661   tanctan 13662   ↾t crest 14675   TopOpenctopn 14676  ℂfldccnfld 18207  TopOnctopon 19178    _D cdv 22018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-inf2 8057  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569  ax-addf 9570  ax-mulf 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-isom 5596  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-of 6523  df-om 6680  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7829  df-fi 7870  df-sup 7900  df-oi 7934  df-card 8319  df-cda 8547  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-4 10595  df-5 10596  df-6 10597  df-7 10598  df-8 10599  df-9 10600  df-10 10601  df-n0 10795  df-z 10864  df-dec 10976  df-uz 11082  df-q 11182  df-rp 11220  df-xneg 11317  df-xadd 11318  df-xmul 11319  df-ioo 11532  df-ioc 11533  df-ico 11534  df-icc 11535  df-fz 11672  df-fzo 11792  df-fl 11896  df-mod 11964  df-seq 12075  df-exp 12134  df-fac 12321  df-bc 12348  df-hash 12373  df-shft 12862  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-limsup 13256  df-clim 13273  df-rlim 13274  df-sum 13471  df-ef 13664  df-sin 13666  df-cos 13667  df-tan 13668  df-pi 13669  df-struct 14491  df-ndx 14492  df-slot 14493  df-base 14494  df-sets 14495  df-ress 14496  df-plusg 14567  df-mulr 14568  df-starv 14569  df-sca 14570  df-vsca 14571  df-ip 14572  df-tset 14573  df-ple 14574  df-ds 14576  df-unif 14577  df-hom 14578  df-cco 14579  df-rest 14677  df-topn 14678  df-0g 14696  df-gsum 14697  df-topgen 14698  df-pt 14699  df-prds 14702  df-xrs 14756  df-qtop 14761  df-imas 14762  df-xps 14764  df-mre 14840  df-mrc 14841  df-acs 14843  df-mnd 15731  df-submnd 15784  df-mulg 15867  df-cntz 16157  df-cmn 16603  df-psmet 18198  df-xmet 18199  df-met 18200  df-bl 18201  df-mopn 18202  df-fbas 18203  df-fg 18204  df-cnfld 18208  df-top 19182  df-bases 19184  df-topon 19185  df-topsp 19186  df-cld 19302  df-ntr 19303  df-cls 19304  df-nei 19381  df-lp 19419  df-perf 19420  df-cn 19510  df-cnp 19511  df-t1 19597  df-haus 19598  df-tx 19814  df-hmeo 20007  df-fil 20098  df-fm 20190  df-flim 20191  df-flf 20192  df-xms 20574  df-ms 20575  df-tms 20576  df-cncf 21133  df-limc 22021  df-dv 22022
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator