MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvsincos Structured version   Unicode version

Theorem dvsincos 22360
Description: Derivative of the sine and cosine functions. (Contributed by Mario Carneiro, 21-May-2016.)
Assertion
Ref Expression
dvsincos  |-  ( ( CC  _D  sin )  =  cos  /\  ( CC 
_D  cos )  =  ( x  e.  CC  |->  -u ( sin `  x ) ) )

Proof of Theorem dvsincos
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cnelprrecn 9588 . . . . . 6  |-  CC  e.  { RR ,  CC }
21a1i 11 . . . . 5  |-  ( T. 
->  CC  e.  { RR ,  CC } )
3 ax-icn 9554 . . . . . . . . . 10  |-  _i  e.  CC
43a1i 11 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  CC )  ->  _i  e.  CC )
5 simpr 461 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  CC )  ->  x  e.  CC )
64, 5mulcld 9619 . . . . . . . 8  |-  ( ( T.  /\  x  e.  CC )  ->  (
_i  x.  x )  e.  CC )
7 efcl 13800 . . . . . . . 8  |-  ( ( _i  x.  x )  e.  CC  ->  ( exp `  ( _i  x.  x ) )  e.  CC )
86, 7syl 16 . . . . . . 7  |-  ( ( T.  /\  x  e.  CC )  ->  ( exp `  ( _i  x.  x ) )  e.  CC )
9 ine0 9999 . . . . . . . 8  |-  _i  =/=  0
109a1i 11 . . . . . . 7  |-  ( ( T.  /\  x  e.  CC )  ->  _i  =/=  0 )
118, 4, 10divcld 10327 . . . . . 6  |-  ( ( T.  /\  x  e.  CC )  ->  (
( exp `  (
_i  x.  x )
)  /  _i )  e.  CC )
12 negicn 9826 . . . . . . . . . 10  |-  -u _i  e.  CC
13 mulcl 9579 . . . . . . . . . 10  |-  ( (
-u _i  e.  CC  /\  x  e.  CC )  ->  ( -u _i  x.  x )  e.  CC )
1412, 5, 13sylancr 663 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  CC )  ->  ( -u _i  x.  x )  e.  CC )
15 efcl 13800 . . . . . . . . 9  |-  ( (
-u _i  x.  x
)  e.  CC  ->  ( exp `  ( -u _i  x.  x ) )  e.  CC )
1614, 15syl 16 . . . . . . . 8  |-  ( ( T.  /\  x  e.  CC )  ->  ( exp `  ( -u _i  x.  x ) )  e.  CC )
1716, 4, 10divcld 10327 . . . . . . 7  |-  ( ( T.  /\  x  e.  CC )  ->  (
( exp `  ( -u _i  x.  x ) )  /  _i )  e.  CC )
1817negcld 9923 . . . . . 6  |-  ( ( T.  /\  x  e.  CC )  ->  -u (
( exp `  ( -u _i  x.  x ) )  /  _i )  e.  CC )
1911, 18addcld 9618 . . . . 5  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  /  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) )  e.  CC )
208, 16addcld 9618 . . . . 5  |-  ( ( T.  /\  x  e.  CC )  ->  (
( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  e.  CC )
218, 4mulcld 9619 . . . . . . . 8  |-  ( ( T.  /\  x  e.  CC )  ->  (
( exp `  (
_i  x.  x )
)  x.  _i )  e.  CC )
22 efcl 13800 . . . . . . . . . 10  |-  ( y  e.  CC  ->  ( exp `  y )  e.  CC )
2322adantl 466 . . . . . . . . 9  |-  ( ( T.  /\  y  e.  CC )  ->  ( exp `  y )  e.  CC )
24 1cnd 9615 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  CC )  ->  1  e.  CC )
252dvmptid 22338 . . . . . . . . . . 11  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  x ) )  =  ( x  e.  CC  |->  1 ) )
263a1i 11 . . . . . . . . . . 11  |-  ( T. 
->  _i  e.  CC )
272, 5, 24, 25, 26dvmptcmul 22345 . . . . . . . . . 10  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( _i  x.  x ) ) )  =  ( x  e.  CC  |->  ( _i  x.  1 ) ) )
283mulid1i 9601 . . . . . . . . . . 11  |-  ( _i  x.  1 )  =  _i
2928mpteq2i 4520 . . . . . . . . . 10  |-  ( x  e.  CC  |->  ( _i  x.  1 ) )  =  ( x  e.  CC  |->  _i )
3027, 29syl6eq 2500 . . . . . . . . 9  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( _i  x.  x ) ) )  =  ( x  e.  CC  |->  _i ) )
31 eff 13799 . . . . . . . . . . . . 13  |-  exp : CC
--> CC
3231a1i 11 . . . . . . . . . . . 12  |-  ( T. 
->  exp : CC --> CC )
3332feqmptd 5911 . . . . . . . . . . 11  |-  ( T. 
->  exp  =  ( y  e.  CC  |->  ( exp `  y ) ) )
3433oveq2d 6297 . . . . . . . . . 10  |-  ( T. 
->  ( CC  _D  exp )  =  ( CC  _D  ( y  e.  CC  |->  ( exp `  y ) ) ) )
35 dvef 22359 . . . . . . . . . . 11  |-  ( CC 
_D  exp )  =  exp
3635, 33syl5eq 2496 . . . . . . . . . 10  |-  ( T. 
->  ( CC  _D  exp )  =  ( y  e.  CC  |->  ( exp `  y
) ) )
3734, 36eqtr3d 2486 . . . . . . . . 9  |-  ( T. 
->  ( CC  _D  (
y  e.  CC  |->  ( exp `  y ) ) )  =  ( y  e.  CC  |->  ( exp `  y ) ) )
38 fveq2 5856 . . . . . . . . 9  |-  ( y  =  ( _i  x.  x )  ->  ( exp `  y )  =  ( exp `  (
_i  x.  x )
) )
392, 2, 6, 4, 23, 23, 30, 37, 38, 38dvmptco 22353 . . . . . . . 8  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( exp `  ( _i  x.  x ) ) ) )  =  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  x.  _i ) ) )
409a1i 11 . . . . . . . 8  |-  ( T. 
->  _i  =/=  0 )
412, 8, 21, 39, 26, 40dvmptdivc 22346 . . . . . . 7  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  /  _i ) ) )  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  x.  _i )  /  _i ) ) )
428, 4, 10divcan4d 10333 . . . . . . . 8  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  x.  _i )  /  _i )  =  ( exp `  (
_i  x.  x )
) )
4342mpteq2dva 4523 . . . . . . 7  |-  ( T. 
->  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  x.  _i )  /  _i ) )  =  ( x  e.  CC  |->  ( exp `  (
_i  x.  x )
) ) )
4441, 43eqtrd 2484 . . . . . 6  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  /  _i ) ) )  =  ( x  e.  CC  |->  ( exp `  ( _i  x.  x ) ) ) )
45 mulcl 9579 . . . . . . . . . 10  |-  ( ( ( exp `  ( -u _i  x.  x ) )  e.  CC  /\  -u _i  e.  CC )  ->  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  e.  CC )
4616, 12, 45sylancl 662 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  CC )  ->  (
( exp `  ( -u _i  x.  x ) )  x.  -u _i )  e.  CC )
4746, 4, 10divcld 10327 . . . . . . . 8  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  /  _i )  e.  CC )
4812a1i 11 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  CC )  ->  -u _i  e.  CC )
4912a1i 11 . . . . . . . . . . . 12  |-  ( T. 
->  -u _i  e.  CC )
502, 5, 24, 25, 49dvmptcmul 22345 . . . . . . . . . . 11  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  (
-u _i  x.  x
) ) )  =  ( x  e.  CC  |->  ( -u _i  x.  1 ) ) )
5112mulid1i 9601 . . . . . . . . . . . 12  |-  ( -u _i  x.  1 )  = 
-u _i
5251mpteq2i 4520 . . . . . . . . . . 11  |-  ( x  e.  CC  |->  ( -u _i  x.  1 ) )  =  ( x  e.  CC  |->  -u _i )
5350, 52syl6eq 2500 . . . . . . . . . 10  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  (
-u _i  x.  x
) ) )  =  ( x  e.  CC  |->  -u _i ) )
54 fveq2 5856 . . . . . . . . . 10  |-  ( y  =  ( -u _i  x.  x )  ->  ( exp `  y )  =  ( exp `  ( -u _i  x.  x ) ) )
552, 2, 14, 48, 23, 23, 53, 37, 54, 54dvmptco 22353 . . . . . . . . 9  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( exp `  ( -u _i  x.  x ) ) ) )  =  ( x  e.  CC  |->  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) ) )
562, 16, 46, 55, 26, 40dvmptdivc 22346 . . . . . . . 8  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( ( exp `  ( -u _i  x.  x ) )  /  _i ) ) )  =  ( x  e.  CC  |->  ( ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  /  _i ) ) )
572, 17, 47, 56dvmptneg 22347 . . . . . . 7  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) ) )  =  ( x  e.  CC  |->  -u ( ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  /  _i ) ) )
5846, 4, 10divneg2d 10341 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  CC )  ->  -u (
( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  /  _i )  =  ( ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  /  -u _i ) )
593, 9negne0i 9899 . . . . . . . . . . 11  |-  -u _i  =/=  0
6059a1i 11 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  CC )  ->  -u _i  =/=  0 )
6116, 48, 60divcan4d 10333 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  /  -u _i )  =  ( exp `  ( -u _i  x.  x ) ) )
6258, 61eqtrd 2484 . . . . . . . 8  |-  ( ( T.  /\  x  e.  CC )  ->  -u (
( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  /  _i )  =  ( exp `  ( -u _i  x.  x ) ) )
6362mpteq2dva 4523 . . . . . . 7  |-  ( T. 
->  ( x  e.  CC  |->  -u ( ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  /  _i ) )  =  ( x  e.  CC  |->  ( exp `  ( -u _i  x.  x ) ) ) )
6457, 63eqtrd 2484 . . . . . 6  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) ) )  =  ( x  e.  CC  |->  ( exp `  ( -u _i  x.  x ) ) ) )
652, 11, 8, 44, 18, 16, 64dvmptadd 22341 . . . . 5  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  /  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) ) ) )  =  ( x  e.  CC  |->  ( ( exp `  ( _i  x.  x
) )  +  ( exp `  ( -u _i  x.  x ) ) ) ) )
66 2cnd 10615 . . . . 5  |-  ( T. 
->  2  e.  CC )
67 2ne0 10635 . . . . . 6  |-  2  =/=  0
6867a1i 11 . . . . 5  |-  ( T. 
->  2  =/=  0
)
692, 19, 20, 65, 66, 68dvmptdivc 22346 . . . 4  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( ( ( ( exp `  ( _i  x.  x
) )  /  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) )  /  2 ) ) )  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) ) )
70 df-sin 13787 . . . . . 6  |-  sin  =  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
718, 16subcld 9936 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  CC )  ->  (
( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  e.  CC )
72 2cnd 10615 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  CC )  ->  2  e.  CC )
7367a1i 11 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  CC )  ->  2  =/=  0 )
7471, 4, 72, 10, 73divdiv1d 10358 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  / 
2 )  =  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( _i  x.  2 ) ) )
75 2cn 10613 . . . . . . . . . . 11  |-  2  e.  CC
763, 75mulcomi 9605 . . . . . . . . . 10  |-  ( _i  x.  2 )  =  ( 2  x.  _i )
7776oveq2i 6292 . . . . . . . . 9  |-  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( _i  x.  2 ) )  =  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) )
7874, 77syl6eq 2500 . . . . . . . 8  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  / 
2 )  =  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
798, 16, 4, 10divsubdird 10366 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  =  ( ( ( exp `  ( _i  x.  x
) )  /  _i )  -  ( ( exp `  ( -u _i  x.  x ) )  /  _i ) ) )
8011, 17negsubd 9942 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  /  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) )  =  ( ( ( exp `  (
_i  x.  x )
)  /  _i )  -  ( ( exp `  ( -u _i  x.  x ) )  /  _i ) ) )
8179, 80eqtr4d 2487 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  =  ( ( ( exp `  ( _i  x.  x
) )  /  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) ) )
8281oveq1d 6296 . . . . . . . 8  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  / 
2 )  =  ( ( ( ( exp `  ( _i  x.  x
) )  /  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) )  /  2 ) )
8378, 82eqtr3d 2486 . . . . . . 7  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) )  =  ( ( ( ( exp `  ( _i  x.  x ) )  /  _i )  + 
-u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) )  /  2
) )
8483mpteq2dva 4523 . . . . . 6  |-  ( T. 
->  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )  =  ( x  e.  CC  |->  ( ( ( ( exp `  (
_i  x.  x )
)  /  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) )  /  2
) ) )
8570, 84syl5eq 2496 . . . . 5  |-  ( T. 
->  sin  =  ( x  e.  CC  |->  ( ( ( ( exp `  (
_i  x.  x )
)  /  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) )  /  2
) ) )
8685oveq2d 6297 . . . 4  |-  ( T. 
->  ( CC  _D  sin )  =  ( CC  _D  ( x  e.  CC  |->  ( ( ( ( exp `  ( _i  x.  x ) )  /  _i )  + 
-u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) )  /  2
) ) ) )
87 df-cos 13788 . . . . 5  |-  cos  =  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) )
8887a1i 11 . . . 4  |-  ( T. 
->  cos  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) ) )
8969, 86, 883eqtr4d 2494 . . 3  |-  ( T. 
->  ( CC  _D  sin )  =  cos )
9021, 46addcld 9618 . . . . 5  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  x.  _i )  +  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) )  e.  CC )
912, 8, 21, 39, 16, 46, 55dvmptadd 22341 . . . . 5  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) ) ) )  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  x.  _i )  +  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) ) ) )
922, 20, 90, 91, 66, 68dvmptdivc 22346 . . . 4  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) ) )  =  ( x  e.  CC  |->  ( ( ( ( exp `  (
_i  x.  x )
)  x.  _i )  +  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) )  / 
2 ) ) )
9388oveq2d 6297 . . . 4  |-  ( T. 
->  ( CC  _D  cos )  =  ( CC  _D  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) ) ) )
9471, 4, 10divcld 10327 . . . . . . 7  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  e.  CC )
9594, 72, 73divnegd 10340 . . . . . 6  |-  ( ( T.  /\  x  e.  CC )  ->  -u (
( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  / 
2 )  =  (
-u ( ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  /  2 ) )
96 sinval 13839 . . . . . . . . 9  |-  ( x  e.  CC  ->  ( sin `  x )  =  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
9796adantl 466 . . . . . . . 8  |-  ( ( T.  /\  x  e.  CC )  ->  ( sin `  x )  =  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
9897, 78eqtr4d 2487 . . . . . . 7  |-  ( ( T.  /\  x  e.  CC )  ->  ( sin `  x )  =  ( ( ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  /  2 ) )
9998negeqd 9819 . . . . . 6  |-  ( ( T.  /\  x  e.  CC )  ->  -u ( sin `  x )  = 
-u ( ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  / 
2 ) )
1003negnegi 9894 . . . . . . . . . 10  |-  -u -u _i  =  _i
101100oveq2i 6292 . . . . . . . . 9  |-  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  x.  -u -u _i )  =  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  x.  _i )
102 mulneg2 10001 . . . . . . . . . 10  |-  ( ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  e.  CC  /\  -u _i  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  x.  -u -u _i )  = 
-u ( ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) )  x.  -u _i ) )
10371, 12, 102sylancl 662 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  x.  -u -u _i )  = 
-u ( ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) )  x.  -u _i ) )
104101, 103syl5eqr 2498 . . . . . . . 8  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  x.  _i )  = 
-u ( ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) )  x.  -u _i ) )
105 mulcl 9579 . . . . . . . . . . 11  |-  ( ( ( exp `  ( -u _i  x.  x ) )  e.  CC  /\  _i  e.  CC )  -> 
( ( exp `  ( -u _i  x.  x ) )  x.  _i )  e.  CC )
10616, 3, 105sylancl 662 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  CC )  ->  (
( exp `  ( -u _i  x.  x ) )  x.  _i )  e.  CC )
10721, 106negsubd 9942 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  x.  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  x.  _i ) )  =  ( ( ( exp `  ( _i  x.  x
) )  x.  _i )  -  ( ( exp `  ( -u _i  x.  x ) )  x.  _i ) ) )
108 mulneg2 10001 . . . . . . . . . . 11  |-  ( ( ( exp `  ( -u _i  x.  x ) )  e.  CC  /\  _i  e.  CC )  -> 
( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  =  -u ( ( exp `  ( -u _i  x.  x ) )  x.  _i ) )
10916, 3, 108sylancl 662 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  CC )  ->  (
( exp `  ( -u _i  x.  x ) )  x.  -u _i )  =  -u ( ( exp `  ( -u _i  x.  x ) )  x.  _i ) )
110109oveq2d 6297 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  x.  _i )  +  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) )  =  ( ( ( exp `  ( _i  x.  x
) )  x.  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  x.  _i ) ) )
1118, 16, 4subdird 10020 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  x.  _i )  =  ( ( ( exp `  ( _i  x.  x
) )  x.  _i )  -  ( ( exp `  ( -u _i  x.  x ) )  x.  _i ) ) )
112107, 110, 1113eqtr4d 2494 . . . . . . . 8  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  x.  _i )  +  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) )  =  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  x.  _i ) )
11371, 4, 10divrecd 10330 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  =  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  x.  ( 1  /  _i ) ) )
114 irec 12249 . . . . . . . . . . 11  |-  ( 1  /  _i )  = 
-u _i
115114oveq2i 6292 . . . . . . . . . 10  |-  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  x.  ( 1  /  _i ) )  =  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  x.  -u _i )
116113, 115syl6eq 2500 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  =  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  x.  -u _i ) )
117116negeqd 9819 . . . . . . . 8  |-  ( ( T.  /\  x  e.  CC )  ->  -u (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  = 
-u ( ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) )  x.  -u _i ) )
118104, 112, 1173eqtr4d 2494 . . . . . . 7  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  x.  _i )  +  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) )  = 
-u ( ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i ) )
119118oveq1d 6296 . . . . . 6  |-  ( ( T.  /\  x  e.  CC )  ->  (
( ( ( exp `  ( _i  x.  x
) )  x.  _i )  +  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) )  / 
2 )  =  (
-u ( ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  /  2 ) )
12095, 99, 1193eqtr4d 2494 . . . . 5  |-  ( ( T.  /\  x  e.  CC )  ->  -u ( sin `  x )  =  ( ( ( ( exp `  ( _i  x.  x ) )  x.  _i )  +  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) )  /  2
) )
121120mpteq2dva 4523 . . . 4  |-  ( T. 
->  ( x  e.  CC  |->  -u ( sin `  x
) )  =  ( x  e.  CC  |->  ( ( ( ( exp `  ( _i  x.  x
) )  x.  _i )  +  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) )  / 
2 ) ) )
12292, 93, 1213eqtr4d 2494 . . 3  |-  ( T. 
->  ( CC  _D  cos )  =  ( x  e.  CC  |->  -u ( sin `  x
) ) )
12389, 122jca 532 . 2  |-  ( T. 
->  ( ( CC  _D  sin )  =  cos  /\  ( CC  _D  cos )  =  ( x  e.  CC  |->  -u ( sin `  x
) ) ) )
124123trud 1392 1  |-  ( ( CC  _D  sin )  =  cos  /\  ( CC 
_D  cos )  =  ( x  e.  CC  |->  -u ( sin `  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1383   T. wtru 1384    e. wcel 1804    =/= wne 2638   {cpr 4016    |-> cmpt 4495   -->wf 5574   ` cfv 5578  (class class class)co 6281   CCcc 9493   RRcr 9494   0cc0 9495   1c1 9496   _ici 9497    + caddc 9498    x. cmul 9500    - cmin 9810   -ucneg 9811    / cdiv 10213   2c2 10592   expce 13779   sincsin 13781   cosccos 13782    _D cdv 22245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-7 10606  df-8 10607  df-9 10608  df-10 10609  df-n0 10803  df-z 10872  df-dec 10987  df-uz 11093  df-q 11194  df-rp 11232  df-xneg 11329  df-xadd 11330  df-xmul 11331  df-ico 11546  df-icc 11547  df-fz 11684  df-fzo 11807  df-fl 11911  df-seq 12090  df-exp 12149  df-fac 12336  df-bc 12363  df-hash 12388  df-shft 12882  df-cj 12914  df-re 12915  df-im 12916  df-sqrt 13050  df-abs 13051  df-limsup 13276  df-clim 13293  df-rlim 13294  df-sum 13491  df-ef 13785  df-sin 13787  df-cos 13788  df-struct 14616  df-ndx 14617  df-slot 14618  df-base 14619  df-sets 14620  df-ress 14621  df-plusg 14692  df-mulr 14693  df-starv 14694  df-sca 14695  df-vsca 14696  df-ip 14697  df-tset 14698  df-ple 14699  df-ds 14701  df-unif 14702  df-hom 14703  df-cco 14704  df-rest 14802  df-topn 14803  df-0g 14821  df-gsum 14822  df-topgen 14823  df-pt 14824  df-prds 14827  df-xrs 14881  df-qtop 14886  df-imas 14887  df-xps 14889  df-mre 14965  df-mrc 14966  df-acs 14968  df-mgm 15851  df-sgrp 15890  df-mnd 15900  df-submnd 15946  df-mulg 16039  df-cntz 16334  df-cmn 16779  df-psmet 18390  df-xmet 18391  df-met 18392  df-bl 18393  df-mopn 18394  df-fbas 18395  df-fg 18396  df-cnfld 18400  df-top 19377  df-bases 19379  df-topon 19380  df-topsp 19381  df-cld 19498  df-ntr 19499  df-cls 19500  df-nei 19577  df-lp 19615  df-perf 19616  df-cn 19706  df-cnp 19707  df-haus 19794  df-tx 20041  df-hmeo 20234  df-fil 20325  df-fm 20417  df-flim 20418  df-flf 20419  df-xms 20801  df-ms 20802  df-tms 20803  df-cncf 21360  df-limc 22248  df-dv 22249
This theorem is referenced by:  dvsin  22361  dvcos  22362
  Copyright terms: Public domain W3C validator