MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrfval Structured version   Unicode version

Theorem dvrfval 16774
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
dvrval.b  |-  B  =  ( Base `  R
)
dvrval.t  |-  .x.  =  ( .r `  R )
dvrval.u  |-  U  =  (Unit `  R )
dvrval.i  |-  I  =  ( invr `  R
)
dvrval.d  |-  ./  =  (/r
`  R )
Assertion
Ref Expression
dvrfval  |-  ./  =  ( x  e.  B ,  y  e.  U  |->  ( x  .x.  (
I `  y )
) )
Distinct variable groups:    x, y, B    x, I, y    x, R, y    x,  .x. , y    x, U, y
Allowed substitution hints:    ./ ( x, y)

Proof of Theorem dvrfval
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 dvrval.d . 2  |-  ./  =  (/r
`  R )
2 fveq2 5689 . . . . . 6  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
3 dvrval.b . . . . . 6  |-  B  =  ( Base `  R
)
42, 3syl6eqr 2491 . . . . 5  |-  ( r  =  R  ->  ( Base `  r )  =  B )
5 fveq2 5689 . . . . . 6  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
6 dvrval.u . . . . . 6  |-  U  =  (Unit `  R )
75, 6syl6eqr 2491 . . . . 5  |-  ( r  =  R  ->  (Unit `  r )  =  U )
8 fveq2 5689 . . . . . . 7  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
9 dvrval.t . . . . . . 7  |-  .x.  =  ( .r `  R )
108, 9syl6eqr 2491 . . . . . 6  |-  ( r  =  R  ->  ( .r `  r )  = 
.x.  )
11 eqidd 2442 . . . . . 6  |-  ( r  =  R  ->  x  =  x )
12 fveq2 5689 . . . . . . . 8  |-  ( r  =  R  ->  ( invr `  r )  =  ( invr `  R
) )
13 dvrval.i . . . . . . . 8  |-  I  =  ( invr `  R
)
1412, 13syl6eqr 2491 . . . . . . 7  |-  ( r  =  R  ->  ( invr `  r )  =  I )
1514fveq1d 5691 . . . . . 6  |-  ( r  =  R  ->  (
( invr `  r ) `  y )  =  ( I `  y ) )
1610, 11, 15oveq123d 6110 . . . . 5  |-  ( r  =  R  ->  (
x ( .r `  r ) ( (
invr `  r ) `  y ) )  =  ( x  .x.  (
I `  y )
) )
174, 7, 16mpt2eq123dv 6146 . . . 4  |-  ( r  =  R  ->  (
x  e.  ( Base `  r ) ,  y  e.  (Unit `  r
)  |->  ( x ( .r `  r ) ( ( invr `  r
) `  y )
) )  =  ( x  e.  B , 
y  e.  U  |->  ( x  .x.  ( I `
 y ) ) ) )
18 df-dvr 16773 . . . 4  |- /r  =  (
r  e.  _V  |->  ( x  e.  ( Base `  r ) ,  y  e.  (Unit `  r
)  |->  ( x ( .r `  r ) ( ( invr `  r
) `  y )
) ) )
19 fvex 5699 . . . . . 6  |-  ( Base `  R )  e.  _V
203, 19eqeltri 2511 . . . . 5  |-  B  e. 
_V
21 fvex 5699 . . . . . 6  |-  (Unit `  R )  e.  _V
226, 21eqeltri 2511 . . . . 5  |-  U  e. 
_V
2320, 22mpt2ex 6648 . . . 4  |-  ( x  e.  B ,  y  e.  U  |->  ( x 
.x.  ( I `  y ) ) )  e.  _V
2417, 18, 23fvmpt 5772 . . 3  |-  ( R  e.  _V  ->  (/r `  R )  =  ( x  e.  B , 
y  e.  U  |->  ( x  .x.  ( I `
 y ) ) ) )
25 fvprc 5683 . . . 4  |-  ( -.  R  e.  _V  ->  (/r `  R )  =  (/) )
26 fvprc 5683 . . . . . . 7  |-  ( -.  R  e.  _V  ->  (
Base `  R )  =  (/) )
273, 26syl5eq 2485 . . . . . 6  |-  ( -.  R  e.  _V  ->  B  =  (/) )
28 eqid 2441 . . . . . 6  |-  U  =  U
29 mpt2eq12 6144 . . . . . 6  |-  ( ( B  =  (/)  /\  U  =  U )  ->  (
x  e.  B , 
y  e.  U  |->  ( x  .x.  ( I `
 y ) ) )  =  ( x  e.  (/) ,  y  e.  U  |->  ( x  .x.  ( I `  y
) ) ) )
3027, 28, 29sylancl 662 . . . . 5  |-  ( -.  R  e.  _V  ->  ( x  e.  B , 
y  e.  U  |->  ( x  .x.  ( I `
 y ) ) )  =  ( x  e.  (/) ,  y  e.  U  |->  ( x  .x.  ( I `  y
) ) ) )
31 mpt20 6154 . . . . 5  |-  ( x  e.  (/) ,  y  e.  U  |->  ( x  .x.  ( I `  y
) ) )  =  (/)
3230, 31syl6eq 2489 . . . 4  |-  ( -.  R  e.  _V  ->  ( x  e.  B , 
y  e.  U  |->  ( x  .x.  ( I `
 y ) ) )  =  (/) )
3325, 32eqtr4d 2476 . . 3  |-  ( -.  R  e.  _V  ->  (/r `  R )  =  ( x  e.  B , 
y  e.  U  |->  ( x  .x.  ( I `
 y ) ) ) )
3424, 33pm2.61i 164 . 2  |-  (/r `  R
)  =  ( x  e.  B ,  y  e.  U  |->  ( x 
.x.  ( I `  y ) ) )
351, 34eqtri 2461 1  |-  ./  =  ( x  e.  B ,  y  e.  U  |->  ( x  .x.  (
I `  y )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1369    e. wcel 1756   _Vcvv 2970   (/)c0 3635   ` cfv 5416  (class class class)co 6089    e. cmpt2 6091   Basecbs 14172   .rcmulr 14237  Unitcui 16729   invrcinvr 16761  /rcdvr 16772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-id 4634  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-1st 6575  df-2nd 6576  df-dvr 16773
This theorem is referenced by:  dvrval  16775  cnflddiv  17844  dvrcn  19756
  Copyright terms: Public domain W3C validator