MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrec Structured version   Unicode version

Theorem dvrec 22483
Description: Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dvrec  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) ) )
Distinct variable group:    x, A

Proof of Theorem dvrec
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfcn 22437 . . . 4  |-  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) : dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) --> CC
2 ssid 3518 . . . . . . . 8  |-  CC  C_  CC
32a1i 11 . . . . . . 7  |-  ( A  e.  CC  ->  CC  C_  CC )
4 eldifsn 4157 . . . . . . . . 9  |-  ( x  e.  ( CC  \  { 0 } )  <-> 
( x  e.  CC  /\  x  =/=  0 ) )
5 divcl 10234 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  CC  /\  x  =/=  0 )  ->  ( A  /  x )  e.  CC )
653expb 1197 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 ) )  ->  ( A  /  x )  e.  CC )
74, 6sylan2b 475 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  ( CC  \  { 0 } ) )  ->  ( A  /  x )  e.  CC )
8 eqid 2457 . . . . . . . 8  |-  ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) )
97, 8fmptd 6056 . . . . . . 7  |-  ( A  e.  CC  ->  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) : ( CC  \  {
0 } ) --> CC )
10 difssd 3628 . . . . . . 7  |-  ( A  e.  CC  ->  ( CC  \  { 0 } )  C_  CC )
113, 9, 10dvbss 22430 . . . . . 6  |-  ( A  e.  CC  ->  dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) 
C_  ( CC  \  { 0 } ) )
12 simpr 461 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  e.  ( CC  \  { 0 } ) )
13 eqid 2457 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
1413cnfldtop 21416 . . . . . . . . . . . 12  |-  ( TopOpen ` fld )  e.  Top
1513cnfldhaus 21417 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  e.  Haus
16 0cn 9605 . . . . . . . . . . . . . 14  |-  0  e.  CC
1713cnfldtopon 21415 . . . . . . . . . . . . . . . 16  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
1817toponunii 19559 . . . . . . . . . . . . . . 15  |-  CC  =  U. ( TopOpen ` fld )
1918sncld 19998 . . . . . . . . . . . . . 14  |-  ( ( ( TopOpen ` fld )  e.  Haus  /\  0  e.  CC )  ->  { 0 }  e.  ( Clsd `  ( TopOpen
` fld
) ) )
2015, 16, 19mp2an 672 . . . . . . . . . . . . 13  |-  { 0 }  e.  ( Clsd `  ( TopOpen ` fld ) )
2118cldopn 19658 . . . . . . . . . . . . 13  |-  ( { 0 }  e.  (
Clsd `  ( TopOpen ` fld ) )  ->  ( CC  \  { 0 } )  e.  ( TopOpen ` fld )
)
2220, 21ax-mp 5 . . . . . . . . . . . 12  |-  ( CC 
\  { 0 } )  e.  ( TopOpen ` fld )
23 isopn3i 19709 . . . . . . . . . . . 12  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( CC  \  {
0 } )  e.  ( TopOpen ` fld ) )  ->  (
( int `  ( TopOpen
` fld
) ) `  ( CC  \  { 0 } ) )  =  ( CC  \  { 0 } ) )
2414, 22, 23mp2an 672 . . . . . . . . . . 11  |-  ( ( int `  ( TopOpen ` fld )
) `  ( CC  \  { 0 } ) )  =  ( CC 
\  { 0 } )
2512, 24syl6eleqr 2556 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  e.  ( ( int `  ( TopOpen
` fld
) ) `  ( CC  \  { 0 } ) ) )
26 eldifi 3622 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( CC  \  { 0 } )  ->  y  e.  CC )
2726adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  e.  CC )
2827sqvald 12309 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( y ^ 2 )  =  ( y  x.  y
) )
2928oveq2d 6312 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( A  /  ( y ^
2 ) )  =  ( A  /  (
y  x.  y ) ) )
30 simpl 457 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  A  e.  CC )
31 eldifsni 4158 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( CC  \  { 0 } )  ->  y  =/=  0
)
3231adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  =/=  0 )
3330, 27, 27, 32, 32divdiv1d 10372 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( ( A  /  y )  / 
y )  =  ( A  /  ( y  x.  y ) ) )
3429, 33eqtr4d 2501 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( A  /  ( y ^
2 ) )  =  ( ( A  / 
y )  /  y
) )
3534negeqd 9833 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  ( y ^
2 ) )  = 
-u ( ( A  /  y )  / 
y ) )
3630, 27, 32divcld 10341 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( A  /  y )  e.  CC )
3736, 27, 32divnegd 10354 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( ( A  /  y )  /  y )  =  ( -u ( A  /  y )  / 
y ) )
3835, 37eqtrd 2498 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  ( y ^
2 ) )  =  ( -u ( A  /  y )  / 
y ) )
3936negcld 9937 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  y )  e.  CC )
40 eqid 2457 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( CC  \  { 0 } ) 
|->  ( -u ( A  /  y )  / 
z ) )  =  ( z  e.  ( CC  \  { 0 } )  |->  ( -u ( A  /  y
)  /  z ) )
4140cdivcncf 21546 . . . . . . . . . . . . . 14  |-  ( -u ( A  /  y
)  e.  CC  ->  ( z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) )  e.  ( ( CC  \  { 0 } )
-cn-> CC ) )
4239, 41syl 16 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) )  e.  ( ( CC  \  {
0 } ) -cn-> CC ) )
43 oveq2 6304 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  ( -u ( A  /  y
)  /  z )  =  ( -u ( A  /  y )  / 
y ) )
4442, 12, 43cnmptlimc 22419 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( -u ( A  /  y )  / 
y )  e.  ( ( z  e.  ( CC  \  { 0 } )  |->  ( -u ( A  /  y
)  /  z ) ) lim CC  y ) )
4538, 44eqeltrd 2545 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  ( y ^
2 ) )  e.  ( ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) ) lim CC  y
) )
46 cncff 21522 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) )  e.  ( ( CC  \  { 0 } )
-cn-> CC )  ->  (
z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) ) : ( CC  \  {
0 } ) --> CC )
4742, 46syl 16 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) ) : ( CC  \  { 0 } ) --> CC )
4847limcdif 22405 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( (
z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) ) lim CC  y )  =  ( ( ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) )  |`  (
( CC  \  {
0 } )  \  { y } ) ) lim CC  y ) )
49 eldifi 3622 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  ( ( CC 
\  { 0 } )  \  { y } )  ->  z  e.  ( CC  \  {
0 } ) )
5049adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  z  e.  ( CC  \  {
0 } ) )
5150eldifad 3483 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  z  e.  CC )
5226ad2antlr 726 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  y  e.  CC )
5351, 52subcld 9950 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
z  -  y )  e.  CC )
5436adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( A  /  y )  e.  CC )
55 eldifsni 4158 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  ( CC  \  { 0 } )  ->  z  =/=  0
)
5650, 55syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  z  =/=  0 )
5754, 51, 56divcld 10341 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( A  /  y
)  /  z )  e.  CC )
58 mulneg12 10016 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z  -  y
)  e.  CC  /\  ( ( A  / 
y )  /  z
)  e.  CC )  ->  ( -u (
z  -  y )  x.  ( ( A  /  y )  / 
z ) )  =  ( ( z  -  y )  x.  -u (
( A  /  y
)  /  z ) ) )
5953, 57, 58syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( -u ( z  -  y
)  x.  ( ( A  /  y )  /  z ) )  =  ( ( z  -  y )  x.  -u ( ( A  / 
y )  /  z
) ) )
6052, 51, 57subdird 10034 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( y  -  z
)  x.  ( ( A  /  y )  /  z ) )  =  ( ( y  x.  ( ( A  /  y )  / 
z ) )  -  ( z  x.  (
( A  /  y
)  /  z ) ) ) )
6151, 52negsubdi2d 9966 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  -u (
z  -  y )  =  ( y  -  z ) )
6261oveq1d 6311 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( -u ( z  -  y
)  x.  ( ( A  /  y )  /  z ) )  =  ( ( y  -  z )  x.  ( ( A  / 
y )  /  z
) ) )
63 oveq2 6304 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  z  ->  ( A  /  x )  =  ( A  /  z
) )
64 ovex 6324 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  /  z )  e. 
_V
6563, 8, 64fvmpt 5956 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  =  ( A  /  z ) )
6650, 65syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  =  ( A  /  z
) )
67 simpll 753 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  A  e.  CC )
6831ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  y  =/=  0 )
6967, 52, 68divcan2d 10343 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
y  x.  ( A  /  y ) )  =  A )
7069oveq1d 6311 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( y  x.  ( A  /  y ) )  /  z )  =  ( A  /  z
) )
7152, 54, 51, 56divassd 10376 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( y  x.  ( A  /  y ) )  /  z )  =  ( y  x.  (
( A  /  y
)  /  z ) ) )
7266, 70, 713eqtr2d 2504 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  =  ( y  x.  (
( A  /  y
)  /  z ) ) )
73 oveq2 6304 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  y  ->  ( A  /  x )  =  ( A  /  y
) )
74 ovex 6324 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  /  y )  e. 
_V
7573, 8, 74fvmpt 5956 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  ( CC  \  { 0 } )  ->  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  y
)  =  ( A  /  y ) )
7675ad2antlr 726 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 y )  =  ( A  /  y
) )
7754, 51, 56divcan2d 10343 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
z  x.  ( ( A  /  y )  /  z ) )  =  ( A  / 
y ) )
7876, 77eqtr4d 2501 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 y )  =  ( z  x.  (
( A  /  y
)  /  z ) ) )
7972, 78oveq12d 6314 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  z )  -  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  y
) )  =  ( ( y  x.  (
( A  /  y
)  /  z ) )  -  ( z  x.  ( ( A  /  y )  / 
z ) ) ) )
8060, 62, 793eqtr4d 2508 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( -u ( z  -  y
)  x.  ( ( A  /  y )  /  z ) )  =  ( ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 y ) ) )
8154, 51, 56divnegd 10354 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  -u (
( A  /  y
)  /  z )  =  ( -u ( A  /  y )  / 
z ) )
8281oveq2d 6312 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( z  -  y
)  x.  -u (
( A  /  y
)  /  z ) )  =  ( ( z  -  y )  x.  ( -u ( A  /  y )  / 
z ) ) )
8359, 80, 823eqtr3d 2506 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  z )  -  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  y
) )  =  ( ( z  -  y
)  x.  ( -u ( A  /  y
)  /  z ) ) )
8483oveq1d 6311 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) )  =  ( ( ( z  -  y )  x.  ( -u ( A  /  y
)  /  z ) )  /  ( z  -  y ) ) )
8554negcld 9937 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  -u ( A  /  y )  e.  CC )
8685, 51, 56divcld 10341 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( -u ( A  /  y
)  /  z )  e.  CC )
87 eldifsni 4158 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( ( CC 
\  { 0 } )  \  { y } )  ->  z  =/=  y )
8887adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  z  =/=  y )
8951, 52, 88subne0d 9959 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
z  -  y )  =/=  0 )
9086, 53, 89divcan3d 10346 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( z  -  y )  x.  ( -u ( A  /  y
)  /  z ) )  /  ( z  -  y ) )  =  ( -u ( A  /  y )  / 
z ) )
9184, 90eqtrd 2498 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) )  =  (
-u ( A  / 
y )  /  z
) )
9291mpteq2dva 4543 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( z  e.  ( ( CC  \  { 0 } ) 
\  { y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  y ) )  /  ( z  -  y ) ) )  =  ( z  e.  ( ( CC 
\  { 0 } )  \  { y } )  |->  ( -u ( A  /  y
)  /  z ) ) )
93 difss 3627 . . . . . . . . . . . . . . 15  |-  ( ( CC  \  { 0 } )  \  {
y } )  C_  ( CC  \  { 0 } )
94 resmpt 5333 . . . . . . . . . . . . . . 15  |-  ( ( ( CC  \  {
0 } )  \  { y } ) 
C_  ( CC  \  { 0 } )  ->  ( ( z  e.  ( CC  \  { 0 } ) 
|->  ( -u ( A  /  y )  / 
z ) )  |`  ( ( CC  \  { 0 } ) 
\  { y } ) )  =  ( z  e.  ( ( CC  \  { 0 } )  \  {
y } )  |->  (
-u ( A  / 
y )  /  z
) ) )
9593, 94ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) )  |`  ( ( CC  \  { 0 } ) 
\  { y } ) )  =  ( z  e.  ( ( CC  \  { 0 } )  \  {
y } )  |->  (
-u ( A  / 
y )  /  z
) )
9692, 95syl6eqr 2516 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( z  e.  ( ( CC  \  { 0 } ) 
\  { y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  y ) )  /  ( z  -  y ) ) )  =  ( ( z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) )  |`  ( ( CC  \  { 0 } ) 
\  { y } ) ) )
9796oveq1d 6311 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( (
z  e.  ( ( CC  \  { 0 } )  \  {
y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) ) ) lim CC  y )  =  ( ( ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) )  |`  (
( CC  \  {
0 } )  \  { y } ) ) lim CC  y ) )
9848, 97eqtr4d 2501 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( (
z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) ) lim CC  y )  =  ( ( z  e.  ( ( CC  \  {
0 } )  \  { y } ) 
|->  ( ( ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 y ) )  /  ( z  -  y ) ) ) lim
CC  y ) )
9945, 98eleqtrd 2547 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  ( y ^
2 ) )  e.  ( ( z  e.  ( ( CC  \  { 0 } ) 
\  { y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  y ) )  /  ( z  -  y ) ) ) lim CC  y ) )
10018restid 14850 . . . . . . . . . . . . 13  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
10114, 100ax-mp 5 . . . . . . . . . . . 12  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
102101eqcomi 2470 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
103 eqid 2457 . . . . . . . . . . 11  |-  ( z  e.  ( ( CC 
\  { 0 } )  \  { y } )  |->  ( ( ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  z )  -  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  y
) )  /  (
z  -  y ) ) )  =  ( z  e.  ( ( CC  \  { 0 } )  \  {
y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) ) )
1042a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  CC  C_  CC )
1059adantr 465 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) : ( CC 
\  { 0 } ) --> CC )
106 difssd 3628 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( CC  \  { 0 } ) 
C_  CC )
107102, 13, 103, 104, 105, 106eldv 22427 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( y
( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )
-u ( A  / 
( y ^ 2 ) )  <->  ( y  e.  ( ( int `  ( TopOpen
` fld
) ) `  ( CC  \  { 0 } ) )  /\  -u ( A  /  ( y ^
2 ) )  e.  ( ( z  e.  ( ( CC  \  { 0 } ) 
\  { y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  y ) )  /  ( z  -  y ) ) ) lim CC  y ) ) ) )
10825, 99, 107mpbir2and 922 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) -u ( A  /  ( y ^
2 ) ) )
109 vex 3112 . . . . . . . . . 10  |-  y  e. 
_V
110 negex 9837 . . . . . . . . . 10  |-  -u ( A  /  ( y ^
2 ) )  e. 
_V
111109, 110breldm 5217 . . . . . . . . 9  |-  ( y ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )
-u ( A  / 
( y ^ 2 ) )  ->  y  e.  dom  ( CC  _D  ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) ) )
112108, 111syl 16 . . . . . . . 8  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  e.  dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) )
113112ex 434 . . . . . . 7  |-  ( A  e.  CC  ->  (
y  e.  ( CC 
\  { 0 } )  ->  y  e.  dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) ) )
114113ssrdv 3505 . . . . . 6  |-  ( A  e.  CC  ->  ( CC  \  { 0 } )  C_  dom  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) )
11511, 114eqssd 3516 . . . . 5  |-  ( A  e.  CC  ->  dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )  =  ( CC  \  { 0 } ) )
116115feq2d 5724 . . . 4  |-  ( A  e.  CC  ->  (
( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) : dom  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) --> CC  <->  ( CC  _D  ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) ) : ( CC 
\  { 0 } ) --> CC ) )
1171, 116mpbii 211 . . 3  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) : ( CC  \  { 0 } ) --> CC )
118 ffn 5737 . . 3  |-  ( ( CC  _D  ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) ) : ( CC  \  {
0 } ) --> CC 
->  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )  Fn  ( CC  \  { 0 } ) )
119117, 118syl 16 . 2  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) )  Fn  ( CC  \  { 0 } ) )
120 negex 9837 . . . 4  |-  -u ( A  /  ( x ^
2 ) )  e. 
_V
121120rgenw 2818 . . 3  |-  A. x  e.  ( CC  \  {
0 } ) -u ( A  /  (
x ^ 2 ) )  e.  _V
122 eqid 2457 . . . 4  |-  ( x  e.  ( CC  \  { 0 } ) 
|->  -u ( A  / 
( x ^ 2 ) ) )  =  ( x  e.  ( CC  \  { 0 } )  |->  -u ( A  /  ( x ^
2 ) ) )
123122fnmpt 5713 . . 3  |-  ( A. x  e.  ( CC  \  { 0 } )
-u ( A  / 
( x ^ 2 ) )  e.  _V  ->  ( x  e.  ( CC  \  { 0 } )  |->  -u ( A  /  ( x ^
2 ) ) )  Fn  ( CC  \  { 0 } ) )
124121, 123mp1i 12 . 2  |-  ( A  e.  CC  ->  (
x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) )  Fn  ( CC  \  {
0 } ) )
125 ffun 5739 . . . . 5  |-  ( ( CC  _D  ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) ) : dom  ( CC  _D  ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) ) --> CC  ->  Fun  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) )
1261, 125mp1i 12 . . . 4  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  Fun  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) )
127 funbrfv 5911 . . . 4  |-  ( Fun  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )  ->  ( y ( CC  _D  ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) ) -u ( A  /  (
y ^ 2 ) )  ->  ( ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) `  y
)  =  -u ( A  /  ( y ^
2 ) ) ) )
128126, 108, 127sylc 60 . . 3  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) `  y
)  =  -u ( A  /  ( y ^
2 ) ) )
129 oveq1 6303 . . . . . . 7  |-  ( x  =  y  ->  (
x ^ 2 )  =  ( y ^
2 ) )
130129oveq2d 6312 . . . . . 6  |-  ( x  =  y  ->  ( A  /  ( x ^
2 ) )  =  ( A  /  (
y ^ 2 ) ) )
131130negeqd 9833 . . . . 5  |-  ( x  =  y  ->  -u ( A  /  ( x ^
2 ) )  = 
-u ( A  / 
( y ^ 2 ) ) )
132131, 122, 110fvmpt 5956 . . . 4  |-  ( y  e.  ( CC  \  { 0 } )  ->  ( ( x  e.  ( CC  \  { 0 } ) 
|->  -u ( A  / 
( x ^ 2 ) ) ) `  y )  =  -u ( A  /  (
y ^ 2 ) ) )
133132adantl 466 . . 3  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( (
x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) ) `  y )  =  -u ( A  /  (
y ^ 2 ) ) )
134128, 133eqtr4d 2501 . 2  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) `  y
)  =  ( ( x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) ) `  y ) )
135119, 124, 134eqfnfvd 5985 1  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   _Vcvv 3109    \ cdif 3468    C_ wss 3471   {csn 4032   class class class wbr 4456    |-> cmpt 4515   dom cdm 5008    |` cres 5010   Fun wfun 5588    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6296   CCcc 9507   0cc0 9509    x. cmul 9514    - cmin 9824   -ucneg 9825    / cdiv 10227   2c2 10606   ^cexp 12168   ↾t crest 14837   TopOpenctopn 14838  ℂfldccnfld 18546   Topctop 19520   Clsdccld 19643   intcnt 19644   Hauscha 19935   -cn->ccncf 21505   lim CC climc 22391    _D cdv 22392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-icc 11561  df-fz 11698  df-fzo 11821  df-seq 12110  df-exp 12169  df-hash 12408  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-ress 14650  df-plusg 14724  df-mulr 14725  df-starv 14726  df-sca 14727  df-vsca 14728  df-ip 14729  df-tset 14730  df-ple 14731  df-ds 14733  df-unif 14734  df-hom 14735  df-cco 14736  df-rest 14839  df-topn 14840  df-0g 14858  df-gsum 14859  df-topgen 14860  df-pt 14861  df-prds 14864  df-xrs 14918  df-qtop 14923  df-imas 14924  df-xps 14926  df-mre 15002  df-mrc 15003  df-acs 15005  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-submnd 16093  df-mulg 16186  df-cntz 16481  df-cmn 16926  df-psmet 18537  df-xmet 18538  df-met 18539  df-bl 18540  df-mopn 18541  df-fbas 18542  df-fg 18543  df-cnfld 18547  df-top 19525  df-bases 19527  df-topon 19528  df-topsp 19529  df-cld 19646  df-ntr 19647  df-cls 19648  df-nei 19725  df-lp 19763  df-perf 19764  df-cn 19854  df-cnp 19855  df-t1 19941  df-haus 19942  df-tx 20188  df-hmeo 20381  df-fil 20472  df-fm 20564  df-flim 20565  df-flf 20566  df-xms 20948  df-ms 20949  df-tms 20950  df-cncf 21507  df-limc 22395  df-dv 22396
This theorem is referenced by:  dvexp3  22504  dvtan  30227  dvrecg  31868
  Copyright terms: Public domain W3C validator