MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrec Structured version   Unicode version

Theorem dvrec 21271
Description: Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dvrec  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) ) )
Distinct variable group:    x, A

Proof of Theorem dvrec
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfcn 21225 . . . 4  |-  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) : dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) --> CC
2 ssid 3363 . . . . . . . 8  |-  CC  C_  CC
32a1i 11 . . . . . . 7  |-  ( A  e.  CC  ->  CC  C_  CC )
4 eldifsn 3988 . . . . . . . . 9  |-  ( x  e.  ( CC  \  { 0 } )  <-> 
( x  e.  CC  /\  x  =/=  0 ) )
5 divcl 9988 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  CC  /\  x  =/=  0 )  ->  ( A  /  x )  e.  CC )
653expb 1181 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 ) )  ->  ( A  /  x )  e.  CC )
74, 6sylan2b 472 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  ( CC  \  { 0 } ) )  ->  ( A  /  x )  e.  CC )
8 eqid 2433 . . . . . . . 8  |-  ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) )
97, 8fmptd 5855 . . . . . . 7  |-  ( A  e.  CC  ->  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) : ( CC  \  {
0 } ) --> CC )
10 difssd 3472 . . . . . . 7  |-  ( A  e.  CC  ->  ( CC  \  { 0 } )  C_  CC )
113, 9, 10dvbss 21218 . . . . . 6  |-  ( A  e.  CC  ->  dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) 
C_  ( CC  \  { 0 } ) )
12 simpr 458 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  e.  ( CC  \  { 0 } ) )
13 eqid 2433 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
1413cnfldtop 20205 . . . . . . . . . . . 12  |-  ( TopOpen ` fld )  e.  Top
1513cnfldhaus 20206 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  e.  Haus
16 0cn 9366 . . . . . . . . . . . . . 14  |-  0  e.  CC
1713cnfldtopon 20204 . . . . . . . . . . . . . . . 16  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
1817toponunii 18379 . . . . . . . . . . . . . . 15  |-  CC  =  U. ( TopOpen ` fld )
1918sncld 18817 . . . . . . . . . . . . . 14  |-  ( ( ( TopOpen ` fld )  e.  Haus  /\  0  e.  CC )  ->  { 0 }  e.  ( Clsd `  ( TopOpen
` fld
) ) )
2015, 16, 19mp2an 665 . . . . . . . . . . . . 13  |-  { 0 }  e.  ( Clsd `  ( TopOpen ` fld ) )
2118cldopn 18477 . . . . . . . . . . . . 13  |-  ( { 0 }  e.  (
Clsd `  ( TopOpen ` fld ) )  ->  ( CC  \  { 0 } )  e.  ( TopOpen ` fld )
)
2220, 21ax-mp 5 . . . . . . . . . . . 12  |-  ( CC 
\  { 0 } )  e.  ( TopOpen ` fld )
23 isopn3i 18528 . . . . . . . . . . . 12  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( CC  \  {
0 } )  e.  ( TopOpen ` fld ) )  ->  (
( int `  ( TopOpen
` fld
) ) `  ( CC  \  { 0 } ) )  =  ( CC  \  { 0 } ) )
2414, 22, 23mp2an 665 . . . . . . . . . . 11  |-  ( ( int `  ( TopOpen ` fld )
) `  ( CC  \  { 0 } ) )  =  ( CC 
\  { 0 } )
2512, 24syl6eleqr 2524 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  e.  ( ( int `  ( TopOpen
` fld
) ) `  ( CC  \  { 0 } ) ) )
26 eldifi 3466 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( CC  \  { 0 } )  ->  y  e.  CC )
2726adantl 463 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  e.  CC )
2827sqvald 11989 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( y ^ 2 )  =  ( y  x.  y
) )
2928oveq2d 6096 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( A  /  ( y ^
2 ) )  =  ( A  /  (
y  x.  y ) ) )
30 simpl 454 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  A  e.  CC )
31 eldifsni 3989 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( CC  \  { 0 } )  ->  y  =/=  0
)
3231adantl 463 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  =/=  0 )
3330, 27, 27, 32, 32divdiv1d 10126 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( ( A  /  y )  / 
y )  =  ( A  /  ( y  x.  y ) ) )
3429, 33eqtr4d 2468 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( A  /  ( y ^
2 ) )  =  ( ( A  / 
y )  /  y
) )
3534negeqd 9592 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  ( y ^
2 ) )  = 
-u ( ( A  /  y )  / 
y ) )
3630, 27, 32divcld 10095 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( A  /  y )  e.  CC )
3736, 27, 32divnegd 10108 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( ( A  /  y )  /  y )  =  ( -u ( A  /  y )  / 
y ) )
3835, 37eqtrd 2465 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  ( y ^
2 ) )  =  ( -u ( A  /  y )  / 
y ) )
3936negcld 9694 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  y )  e.  CC )
40 eqid 2433 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( CC  \  { 0 } ) 
|->  ( -u ( A  /  y )  / 
z ) )  =  ( z  e.  ( CC  \  { 0 } )  |->  ( -u ( A  /  y
)  /  z ) )
4140cdivcncf 20335 . . . . . . . . . . . . . 14  |-  ( -u ( A  /  y
)  e.  CC  ->  ( z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) )  e.  ( ( CC  \  { 0 } )
-cn-> CC ) )
4239, 41syl 16 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) )  e.  ( ( CC  \  {
0 } ) -cn-> CC ) )
43 oveq2 6088 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  ( -u ( A  /  y
)  /  z )  =  ( -u ( A  /  y )  / 
y ) )
4442, 12, 43cnmptlimc 21207 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( -u ( A  /  y )  / 
y )  e.  ( ( z  e.  ( CC  \  { 0 } )  |->  ( -u ( A  /  y
)  /  z ) ) lim CC  y ) )
4538, 44eqeltrd 2507 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  ( y ^
2 ) )  e.  ( ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) ) lim CC  y
) )
46 cncff 20311 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) )  e.  ( ( CC  \  { 0 } )
-cn-> CC )  ->  (
z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) ) : ( CC  \  {
0 } ) --> CC )
4742, 46syl 16 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) ) : ( CC  \  { 0 } ) --> CC )
4847limcdif 21193 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( (
z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) ) lim CC  y )  =  ( ( ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) )  |`  (
( CC  \  {
0 } )  \  { y } ) ) lim CC  y ) )
49 eldifi 3466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  ( ( CC 
\  { 0 } )  \  { y } )  ->  z  e.  ( CC  \  {
0 } ) )
5049adantl 463 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  z  e.  ( CC  \  {
0 } ) )
5150eldifad 3328 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  z  e.  CC )
5226ad2antlr 719 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  y  e.  CC )
5351, 52subcld 9707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
z  -  y )  e.  CC )
5436adantr 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( A  /  y )  e.  CC )
55 eldifsni 3989 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  ( CC  \  { 0 } )  ->  z  =/=  0
)
5650, 55syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  z  =/=  0 )
5754, 51, 56divcld 10095 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( A  /  y
)  /  z )  e.  CC )
58 mulneg12 9771 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z  -  y
)  e.  CC  /\  ( ( A  / 
y )  /  z
)  e.  CC )  ->  ( -u (
z  -  y )  x.  ( ( A  /  y )  / 
z ) )  =  ( ( z  -  y )  x.  -u (
( A  /  y
)  /  z ) ) )
5953, 57, 58syl2anc 654 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( -u ( z  -  y
)  x.  ( ( A  /  y )  /  z ) )  =  ( ( z  -  y )  x.  -u ( ( A  / 
y )  /  z
) ) )
6052, 51, 57subdird 9789 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( y  -  z
)  x.  ( ( A  /  y )  /  z ) )  =  ( ( y  x.  ( ( A  /  y )  / 
z ) )  -  ( z  x.  (
( A  /  y
)  /  z ) ) ) )
6151, 52negsubdi2d 9723 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  -u (
z  -  y )  =  ( y  -  z ) )
6261oveq1d 6095 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( -u ( z  -  y
)  x.  ( ( A  /  y )  /  z ) )  =  ( ( y  -  z )  x.  ( ( A  / 
y )  /  z
) ) )
63 oveq2 6088 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  z  ->  ( A  /  x )  =  ( A  /  z
) )
64 ovex 6105 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  /  z )  e. 
_V
6563, 8, 64fvmpt 5762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  =  ( A  /  z ) )
6650, 65syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  =  ( A  /  z
) )
67 simpll 746 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  A  e.  CC )
6831ad2antlr 719 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  y  =/=  0 )
6967, 52, 68divcan2d 10097 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
y  x.  ( A  /  y ) )  =  A )
7069oveq1d 6095 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( y  x.  ( A  /  y ) )  /  z )  =  ( A  /  z
) )
7152, 54, 51, 56divassd 10130 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( y  x.  ( A  /  y ) )  /  z )  =  ( y  x.  (
( A  /  y
)  /  z ) ) )
7266, 70, 713eqtr2d 2471 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  =  ( y  x.  (
( A  /  y
)  /  z ) ) )
73 oveq2 6088 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  y  ->  ( A  /  x )  =  ( A  /  y
) )
74 ovex 6105 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  /  y )  e. 
_V
7573, 8, 74fvmpt 5762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  ( CC  \  { 0 } )  ->  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  y
)  =  ( A  /  y ) )
7675ad2antlr 719 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 y )  =  ( A  /  y
) )
7754, 51, 56divcan2d 10097 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
z  x.  ( ( A  /  y )  /  z ) )  =  ( A  / 
y ) )
7876, 77eqtr4d 2468 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 y )  =  ( z  x.  (
( A  /  y
)  /  z ) ) )
7972, 78oveq12d 6098 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  z )  -  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  y
) )  =  ( ( y  x.  (
( A  /  y
)  /  z ) )  -  ( z  x.  ( ( A  /  y )  / 
z ) ) ) )
8060, 62, 793eqtr4d 2475 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( -u ( z  -  y
)  x.  ( ( A  /  y )  /  z ) )  =  ( ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 y ) ) )
8154, 51, 56divnegd 10108 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  -u (
( A  /  y
)  /  z )  =  ( -u ( A  /  y )  / 
z ) )
8281oveq2d 6096 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( z  -  y
)  x.  -u (
( A  /  y
)  /  z ) )  =  ( ( z  -  y )  x.  ( -u ( A  /  y )  / 
z ) ) )
8359, 80, 823eqtr3d 2473 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  z )  -  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  y
) )  =  ( ( z  -  y
)  x.  ( -u ( A  /  y
)  /  z ) ) )
8483oveq1d 6095 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) )  =  ( ( ( z  -  y )  x.  ( -u ( A  /  y
)  /  z ) )  /  ( z  -  y ) ) )
8554negcld 9694 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  -u ( A  /  y )  e.  CC )
8685, 51, 56divcld 10095 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( -u ( A  /  y
)  /  z )  e.  CC )
87 eldifsni 3989 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( ( CC 
\  { 0 } )  \  { y } )  ->  z  =/=  y )
8887adantl 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  z  =/=  y )
8951, 52, 88subne0d 9716 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
z  -  y )  =/=  0 )
9086, 53, 89divcan3d 10100 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( z  -  y )  x.  ( -u ( A  /  y
)  /  z ) )  /  ( z  -  y ) )  =  ( -u ( A  /  y )  / 
z ) )
9184, 90eqtrd 2465 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) )  =  (
-u ( A  / 
y )  /  z
) )
9291mpteq2dva 4366 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( z  e.  ( ( CC  \  { 0 } ) 
\  { y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  y ) )  /  ( z  -  y ) ) )  =  ( z  e.  ( ( CC 
\  { 0 } )  \  { y } )  |->  ( -u ( A  /  y
)  /  z ) ) )
93 difss 3471 . . . . . . . . . . . . . . 15  |-  ( ( CC  \  { 0 } )  \  {
y } )  C_  ( CC  \  { 0 } )
94 resmpt 5144 . . . . . . . . . . . . . . 15  |-  ( ( ( CC  \  {
0 } )  \  { y } ) 
C_  ( CC  \  { 0 } )  ->  ( ( z  e.  ( CC  \  { 0 } ) 
|->  ( -u ( A  /  y )  / 
z ) )  |`  ( ( CC  \  { 0 } ) 
\  { y } ) )  =  ( z  e.  ( ( CC  \  { 0 } )  \  {
y } )  |->  (
-u ( A  / 
y )  /  z
) ) )
9593, 94ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) )  |`  ( ( CC  \  { 0 } ) 
\  { y } ) )  =  ( z  e.  ( ( CC  \  { 0 } )  \  {
y } )  |->  (
-u ( A  / 
y )  /  z
) )
9692, 95syl6eqr 2483 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( z  e.  ( ( CC  \  { 0 } ) 
\  { y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  y ) )  /  ( z  -  y ) ) )  =  ( ( z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) )  |`  ( ( CC  \  { 0 } ) 
\  { y } ) ) )
9796oveq1d 6095 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( (
z  e.  ( ( CC  \  { 0 } )  \  {
y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) ) ) lim CC  y )  =  ( ( ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) )  |`  (
( CC  \  {
0 } )  \  { y } ) ) lim CC  y ) )
9848, 97eqtr4d 2468 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( (
z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) ) lim CC  y )  =  ( ( z  e.  ( ( CC  \  {
0 } )  \  { y } ) 
|->  ( ( ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 y ) )  /  ( z  -  y ) ) ) lim
CC  y ) )
9945, 98eleqtrd 2509 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  ( y ^
2 ) )  e.  ( ( z  e.  ( ( CC  \  { 0 } ) 
\  { y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  y ) )  /  ( z  -  y ) ) ) lim CC  y ) )
10018restid 14355 . . . . . . . . . . . . 13  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
10114, 100ax-mp 5 . . . . . . . . . . . 12  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
102101eqcomi 2437 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
103 eqid 2433 . . . . . . . . . . 11  |-  ( z  e.  ( ( CC 
\  { 0 } )  \  { y } )  |->  ( ( ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  z )  -  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  y
) )  /  (
z  -  y ) ) )  =  ( z  e.  ( ( CC  \  { 0 } )  \  {
y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) ) )
1042a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  CC  C_  CC )
1059adantr 462 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) : ( CC 
\  { 0 } ) --> CC )
106 difssd 3472 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( CC  \  { 0 } ) 
C_  CC )
107102, 13, 103, 104, 105, 106eldv 21215 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( y
( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )
-u ( A  / 
( y ^ 2 ) )  <->  ( y  e.  ( ( int `  ( TopOpen
` fld
) ) `  ( CC  \  { 0 } ) )  /\  -u ( A  /  ( y ^
2 ) )  e.  ( ( z  e.  ( ( CC  \  { 0 } ) 
\  { y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  y ) )  /  ( z  -  y ) ) ) lim CC  y ) ) ) )
10825, 99, 107mpbir2and 906 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) -u ( A  /  ( y ^
2 ) ) )
109 vex 2965 . . . . . . . . . 10  |-  y  e. 
_V
110 negex 9596 . . . . . . . . . 10  |-  -u ( A  /  ( y ^
2 ) )  e. 
_V
111109, 110breldm 5031 . . . . . . . . 9  |-  ( y ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )
-u ( A  / 
( y ^ 2 ) )  ->  y  e.  dom  ( CC  _D  ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) ) )
112108, 111syl 16 . . . . . . . 8  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  e.  dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) )
113112ex 434 . . . . . . 7  |-  ( A  e.  CC  ->  (
y  e.  ( CC 
\  { 0 } )  ->  y  e.  dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) ) )
114113ssrdv 3350 . . . . . 6  |-  ( A  e.  CC  ->  ( CC  \  { 0 } )  C_  dom  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) )
11511, 114eqssd 3361 . . . . 5  |-  ( A  e.  CC  ->  dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )  =  ( CC  \  { 0 } ) )
116115feq2d 5535 . . . 4  |-  ( A  e.  CC  ->  (
( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) : dom  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) --> CC  <->  ( CC  _D  ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) ) : ( CC 
\  { 0 } ) --> CC ) )
1171, 116mpbii 211 . . 3  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) : ( CC  \  { 0 } ) --> CC )
118 ffn 5547 . . 3  |-  ( ( CC  _D  ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) ) : ( CC  \  {
0 } ) --> CC 
->  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )  Fn  ( CC  \  { 0 } ) )
119117, 118syl 16 . 2  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) )  Fn  ( CC  \  { 0 } ) )
120 negex 9596 . . . 4  |-  -u ( A  /  ( x ^
2 ) )  e. 
_V
121120rgenw 2773 . . 3  |-  A. x  e.  ( CC  \  {
0 } ) -u ( A  /  (
x ^ 2 ) )  e.  _V
122 eqid 2433 . . . 4  |-  ( x  e.  ( CC  \  { 0 } ) 
|->  -u ( A  / 
( x ^ 2 ) ) )  =  ( x  e.  ( CC  \  { 0 } )  |->  -u ( A  /  ( x ^
2 ) ) )
123122fnmpt 5525 . . 3  |-  ( A. x  e.  ( CC  \  { 0 } )
-u ( A  / 
( x ^ 2 ) )  e.  _V  ->  ( x  e.  ( CC  \  { 0 } )  |->  -u ( A  /  ( x ^
2 ) ) )  Fn  ( CC  \  { 0 } ) )
124121, 123mp1i 12 . 2  |-  ( A  e.  CC  ->  (
x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) )  Fn  ( CC  \  {
0 } ) )
125 ffun 5549 . . . . 5  |-  ( ( CC  _D  ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) ) : dom  ( CC  _D  ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) ) --> CC  ->  Fun  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) )
1261, 125mp1i 12 . . . 4  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  Fun  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) )
127 funbrfv 5718 . . . 4  |-  ( Fun  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )  ->  ( y ( CC  _D  ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) ) -u ( A  /  (
y ^ 2 ) )  ->  ( ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) `  y
)  =  -u ( A  /  ( y ^
2 ) ) ) )
128126, 108, 127sylc 60 . . 3  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) `  y
)  =  -u ( A  /  ( y ^
2 ) ) )
129 oveq1 6087 . . . . . . 7  |-  ( x  =  y  ->  (
x ^ 2 )  =  ( y ^
2 ) )
130129oveq2d 6096 . . . . . 6  |-  ( x  =  y  ->  ( A  /  ( x ^
2 ) )  =  ( A  /  (
y ^ 2 ) ) )
131130negeqd 9592 . . . . 5  |-  ( x  =  y  ->  -u ( A  /  ( x ^
2 ) )  = 
-u ( A  / 
( y ^ 2 ) ) )
132131, 122, 110fvmpt 5762 . . . 4  |-  ( y  e.  ( CC  \  { 0 } )  ->  ( ( x  e.  ( CC  \  { 0 } ) 
|->  -u ( A  / 
( x ^ 2 ) ) ) `  y )  =  -u ( A  /  (
y ^ 2 ) ) )
133132adantl 463 . . 3  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( (
x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) ) `  y )  =  -u ( A  /  (
y ^ 2 ) ) )
134128, 133eqtr4d 2468 . 2  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) `  y
)  =  ( ( x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) ) `  y ) )
135119, 124, 134eqfnfvd 5788 1  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755    =/= wne 2596   A.wral 2705   _Vcvv 2962    \ cdif 3313    C_ wss 3316   {csn 3865   class class class wbr 4280    e. cmpt 4338   dom cdm 4827    |` cres 4829   Fun wfun 5400    Fn wfn 5401   -->wf 5402   ` cfv 5406  (class class class)co 6080   CCcc 9268   0cc0 9270    x. cmul 9275    - cmin 9583   -ucneg 9584    / cdiv 9981   2c2 10359   ^cexp 11849   ↾t crest 14342   TopOpenctopn 14343  ℂfldccnfld 17662   Topctop 18340   Clsdccld 18462   intcnt 18463   Hauscha 18754   -cn->ccncf 20294   lim CC climc 21179    _D cdv 21180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-q 10942  df-rp 10980  df-xneg 11077  df-xadd 11078  df-xmul 11079  df-icc 11295  df-fz 11425  df-fzo 11533  df-seq 11791  df-exp 11850  df-hash 12088  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-hom 14245  df-cco 14246  df-rest 14344  df-topn 14345  df-0g 14363  df-gsum 14364  df-topgen 14365  df-pt 14366  df-prds 14369  df-xrs 14423  df-qtop 14428  df-imas 14429  df-xps 14431  df-mre 14507  df-mrc 14508  df-acs 14510  df-mnd 15398  df-submnd 15448  df-mulg 15528  df-cntz 15815  df-cmn 16259  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656  df-mopn 17657  df-fbas 17658  df-fg 17659  df-cnfld 17663  df-top 18345  df-bases 18347  df-topon 18348  df-topsp 18349  df-cld 18465  df-ntr 18466  df-cls 18467  df-nei 18544  df-lp 18582  df-perf 18583  df-cn 18673  df-cnp 18674  df-t1 18760  df-haus 18761  df-tx 18977  df-hmeo 19170  df-fil 19261  df-fm 19353  df-flim 19354  df-flf 19355  df-xms 19737  df-ms 19738  df-tms 19739  df-cncf 20296  df-limc 21183  df-dv 21184
This theorem is referenced by:  dvexp3  21292  dvtan  28286
  Copyright terms: Public domain W3C validator