MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrass Structured version   Unicode version

Theorem dvrass 16897
Description: An associative law for division. (divass 10116 analog.) (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
dvrass.b  |-  B  =  ( Base `  R
)
dvrass.o  |-  U  =  (Unit `  R )
dvrass.d  |-  ./  =  (/r
`  R )
dvrass.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
dvrass  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .x.  Y )  ./  Z )  =  ( X  .x.  ( Y 
./  Z ) ) )

Proof of Theorem dvrass
StepHypRef Expression
1 simpl 457 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  R  e.  Ring )
2 simpr1 994 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  X  e.  B )
3 simpr2 995 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  Y  e.  B )
4 simpr3 996 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  Z  e.  U )
5 dvrass.o . . . . 5  |-  U  =  (Unit `  R )
6 eqid 2451 . . . . 5  |-  ( invr `  R )  =  (
invr `  R )
7 dvrass.b . . . . 5  |-  B  =  ( Base `  R
)
85, 6, 7rnginvcl 16883 . . . 4  |-  ( ( R  e.  Ring  /\  Z  e.  U )  ->  (
( invr `  R ) `  Z )  e.  B
)
91, 4, 8syl2anc 661 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( invr `  R ) `  Z )  e.  B
)
10 dvrass.t . . . 4  |-  .x.  =  ( .r `  R )
117, 10rngass 16776 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  ( ( invr `  R
) `  Z )  e.  B ) )  -> 
( ( X  .x.  Y )  .x.  (
( invr `  R ) `  Z ) )  =  ( X  .x.  ( Y  .x.  ( ( invr `  R ) `  Z
) ) ) )
121, 2, 3, 9, 11syl13anc 1221 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .x.  Y )  .x.  ( ( invr `  R
) `  Z )
)  =  ( X 
.x.  ( Y  .x.  ( ( invr `  R
) `  Z )
) ) )
137, 10rngcl 16773 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  e.  B )
14133adant3r3 1199 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( X  .x.  Y )  e.  B
)
15 dvrass.d . . . 4  |-  ./  =  (/r
`  R )
167, 10, 5, 6, 15dvrval 16892 . . 3  |-  ( ( ( X  .x.  Y
)  e.  B  /\  Z  e.  U )  ->  ( ( X  .x.  Y )  ./  Z
)  =  ( ( X  .x.  Y ) 
.x.  ( ( invr `  R ) `  Z
) ) )
1714, 4, 16syl2anc 661 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .x.  Y )  ./  Z )  =  ( ( X  .x.  Y
)  .x.  ( ( invr `  R ) `  Z ) ) )
187, 10, 5, 6, 15dvrval 16892 . . . 4  |-  ( ( Y  e.  B  /\  Z  e.  U )  ->  ( Y  ./  Z
)  =  ( Y 
.x.  ( ( invr `  R ) `  Z
) ) )
193, 4, 18syl2anc 661 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( Y  ./  Z )  =  ( Y  .x.  ( (
invr `  R ) `  Z ) ) )
2019oveq2d 6209 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( X  .x.  ( Y  ./  Z
) )  =  ( X  .x.  ( Y 
.x.  ( ( invr `  R ) `  Z
) ) ) )
2112, 17, 203eqtr4d 2502 1  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .x.  Y )  ./  Z )  =  ( X  .x.  ( Y 
./  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   ` cfv 5519  (class class class)co 6193   Basecbs 14285   .rcmulr 14350   Ringcrg 16760  Unitcui 16846   invrcinvr 16878  /rcdvr 16889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-tpos 6848  df-recs 6935  df-rdg 6969  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-nn 10427  df-2 10484  df-3 10485  df-ndx 14288  df-slot 14289  df-base 14290  df-sets 14291  df-ress 14292  df-plusg 14362  df-mulr 14363  df-0g 14491  df-mnd 15526  df-grp 15656  df-minusg 15657  df-mgp 16706  df-ur 16718  df-rng 16762  df-oppr 16830  df-dvdsr 16848  df-unit 16849  df-invr 16879  df-dvr 16890
This theorem is referenced by:  dvrcan3  16899  irredrmul  16914  dvrcan5  26399
  Copyright terms: Public domain W3C validator