MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvply1 Structured version   Visualization version   Unicode version

Theorem dvply1 23316
Description: Derivative of a polynomial, explicit sum version. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvply1.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
dvply1.g  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
dvply1.a  |-  ( ph  ->  A : NN0 --> CC )
dvply1.b  |-  B  =  ( k  e.  NN0  |->  ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) ) )
dvply1.n  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
dvply1  |-  ( ph  ->  ( CC  _D  F
)  =  G )
Distinct variable groups:    ph, z, k   
z, A, k    z, B    k, N, z
Allowed substitution hints:    B( k)    F( z, k)    G( z, k)

Proof of Theorem dvply1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 dvply1.f . . 3  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
21oveq2d 6324 . 2  |-  ( ph  ->  ( CC  _D  F
)  =  ( CC 
_D  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
z ^ k ) ) ) ) )
3 eqid 2471 . . . . . 6  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
43cnfldtop 21882 . . . . 5  |-  ( TopOpen ` fld )  e.  Top
53cnfldtopon 21881 . . . . . . 7  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
65toponunii 20024 . . . . . 6  |-  CC  =  U. ( TopOpen ` fld )
76restid 15410 . . . . 5  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
84, 7ax-mp 5 . . . 4  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
98eqcomi 2480 . . 3  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
10 cnelprrecn 9650 . . . 4  |-  CC  e.  { RR ,  CC }
1110a1i 11 . . 3  |-  ( ph  ->  CC  e.  { RR ,  CC } )
126topopn 20013 . . . 4  |-  ( (
TopOpen ` fld )  e.  Top  ->  CC  e.  ( TopOpen ` fld ) )
134, 12mp1i 13 . . 3  |-  ( ph  ->  CC  e.  ( TopOpen ` fld )
)
14 fzfid 12224 . . 3  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
15 dvply1.a . . . . . . 7  |-  ( ph  ->  A : NN0 --> CC )
16 elfznn0 11913 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
17 ffvelrn 6035 . . . . . . 7  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
1815, 16, 17syl2an 485 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
1918adantr 472 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  ->  ( A `  k )  e.  CC )
20 simpr 468 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  ->  z  e.  CC )
2116ad2antlr 741 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  ->  k  e.  NN0 )
2220, 21expcld 12454 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  ->  (
z ^ k )  e.  CC )
2319, 22mulcld 9681 . . . 4  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
24233impa 1226 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  ->  ( ( A `  k )  x.  ( z ^
k ) )  e.  CC )
25183adant3 1050 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  ->  ( A `
 k )  e.  CC )
26 0cnd 9654 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  k  =  0 )  -> 
0  e.  CC )
27 simpl2 1034 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
k  e.  ( 0 ... N ) )
2827, 16syl 17 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
k  e.  NN0 )
2928nn0cnd 10951 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
k  e.  CC )
30 simpl3 1035 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
z  e.  CC )
31 simpr 468 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  ->  -.  k  =  0
)
32 elnn0 10895 . . . . . . . . . 10  |-  ( k  e.  NN0  <->  ( k  e.  NN  \/  k  =  0 ) )
3328, 32sylib 201 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
( k  e.  NN  \/  k  =  0
) )
34 orel2 390 . . . . . . . . 9  |-  ( -.  k  =  0  -> 
( ( k  e.  NN  \/  k  =  0 )  ->  k  e.  NN ) )
3531, 33, 34sylc 61 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
k  e.  NN )
36 nnm1nn0 10935 . . . . . . . 8  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
3735, 36syl 17 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
( k  -  1 )  e.  NN0 )
3830, 37expcld 12454 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
( z ^ (
k  -  1 ) )  e.  CC )
3929, 38mulcld 9681 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
( k  x.  (
z ^ ( k  -  1 ) ) )  e.  CC )
4026, 39ifclda 3904 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) )  e.  CC )
4125, 40mulcld 9681 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  ->  ( ( A `  k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ (
k  -  1 ) ) ) ) )  e.  CC )
4210a1i 11 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  CC  e.  { RR ,  CC } )
43 c0ex 9655 . . . . . 6  |-  0  e.  _V
44 ovex 6336 . . . . . 6  |-  ( k  x.  ( z ^
( k  -  1 ) ) )  e. 
_V
4543, 44ifex 3940 . . . . 5  |-  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) )  e.  _V
4645a1i 11 . . . 4  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ ( k  - 
1 ) ) ) )  e.  _V )
4716adantl 473 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
48 dvexp2 22987 . . . . 5  |-  ( k  e.  NN0  ->  ( CC 
_D  ( z  e.  CC  |->  ( z ^
k ) ) )  =  ( z  e.  CC  |->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ (
k  -  1 ) ) ) ) ) )
4947, 48syl 17 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( CC  _D  ( z  e.  CC  |->  ( z ^
k ) ) )  =  ( z  e.  CC  |->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ (
k  -  1 ) ) ) ) ) )
5042, 22, 46, 49, 18dvmptcmul 22997 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( CC  _D  ( z  e.  CC  |->  ( ( A `
 k )  x.  ( z ^ k
) ) ) )  =  ( z  e.  CC  |->  ( ( A `
 k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  (
z ^ ( k  -  1 ) ) ) ) ) ) )
519, 3, 11, 13, 14, 24, 41, 50dvmptfsum 23006 . 2  |-  ( ph  ->  ( CC  _D  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) ) ) ) )
52 elfznn 11854 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN )
5352nnne0d 10676 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... N )  ->  k  =/=  0 )
5453neneqd 2648 . . . . . . . . 9  |-  ( k  e.  ( 1 ... N )  ->  -.  k  =  0 )
5554adantl 473 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  -.  k  =  0 )
5655iffalsed 3883 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ ( k  - 
1 ) ) ) )  =  ( k  x.  ( z ^
( k  -  1 ) ) ) )
5756oveq2d 6324 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  (
( A `  k
)  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) ) )  =  ( ( A `  k )  x.  ( k  x.  ( z ^ (
k  -  1 ) ) ) ) )
5857sumeq2dv 13846 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 1 ... N
) ( ( A `
 k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  (
z ^ ( k  -  1 ) ) ) ) )  = 
sum_ k  e.  ( 1 ... N ) ( ( A `  k )  x.  (
k  x.  ( z ^ ( k  - 
1 ) ) ) ) )
59 1eluzge0 11226 . . . . . . 7  |-  1  e.  ( ZZ>= `  0 )
60 fzss1 11863 . . . . . . 7  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... N )  C_  ( 0 ... N
) )
6159, 60mp1i 13 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  ( 1 ... N )  C_  ( 0 ... N
) )
6215adantr 472 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  A : NN0
--> CC )
6352nnnn0d 10949 . . . . . . . 8  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN0 )
6462, 63, 17syl2an 485 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  ( A `  k )  e.  CC )
6553adantl 473 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  k  =/=  0 )
6665neneqd 2648 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  -.  k  =  0 )
6766iffalsed 3883 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ ( k  - 
1 ) ) ) )  =  ( k  x.  ( z ^
( k  -  1 ) ) ) )
6863adantl 473 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  k  e.  NN0 )
6968nn0cnd 10951 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  k  e.  CC )
70 simplr 770 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  z  e.  CC )
7152, 36syl 17 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... N )  ->  (
k  -  1 )  e.  NN0 )
7271adantl 473 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  (
k  -  1 )  e.  NN0 )
7370, 72expcld 12454 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  (
z ^ ( k  -  1 ) )  e.  CC )
7469, 73mulcld 9681 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  (
k  x.  ( z ^ ( k  - 
1 ) ) )  e.  CC )
7567, 74eqeltrd 2549 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ ( k  - 
1 ) ) ) )  e.  CC )
7664, 75mulcld 9681 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  (
( A `  k
)  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) ) )  e.  CC )
77 eldifn 3545 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0 ... N )  \ 
( 1 ... N
) )  ->  -.  k  e.  ( 1 ... N ) )
78 0p1e1 10743 . . . . . . . . . . . . . 14  |-  ( 0  +  1 )  =  1
7978oveq1i 6318 . . . . . . . . . . . . 13  |-  ( ( 0  +  1 ) ... N )  =  ( 1 ... N
)
8079eleq2i 2541 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0  +  1 ) ... N )  <->  k  e.  ( 1 ... N
) )
8177, 80sylnibr 312 . . . . . . . . . . 11  |-  ( k  e.  ( ( 0 ... N )  \ 
( 1 ... N
) )  ->  -.  k  e.  ( (
0  +  1 ) ... N ) )
8281adantl 473 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  -.  k  e.  ( ( 0  +  1 ) ... N
) )
83 eldifi 3544 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0 ... N )  \ 
( 1 ... N
) )  ->  k  e.  ( 0 ... N
) )
8483adantl 473 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  k  e.  ( 0 ... N
) )
85 dvply1.n . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  NN0 )
86 nn0uz 11217 . . . . . . . . . . . . . 14  |-  NN0  =  ( ZZ>= `  0 )
8785, 86syl6eleq 2559 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
8887ad2antrr 740 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  N  e.  ( ZZ>= `  0 )
)
89 elfzp12 11899 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( k  e.  ( 0 ... N
)  <->  ( k  =  0  \/  k  e.  ( ( 0  +  1 ) ... N
) ) ) )
9088, 89syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  ( k  e.  ( 0 ... N
)  <->  ( k  =  0  \/  k  e.  ( ( 0  +  1 ) ... N
) ) ) )
9184, 90mpbid 215 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  ( k  =  0  \/  k  e.  ( ( 0  +  1 ) ... N
) ) )
92 orel2 390 . . . . . . . . . 10  |-  ( -.  k  e.  ( ( 0  +  1 ) ... N )  -> 
( ( k  =  0  \/  k  e.  ( ( 0  +  1 ) ... N
) )  ->  k  =  0 ) )
9382, 91, 92sylc 61 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  k  = 
0 )
9493iftrued 3880 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  if (
k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) )  =  0 )
9594oveq2d 6324 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  ( ( A `  k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  (
z ^ ( k  -  1 ) ) ) ) )  =  ( ( A `  k )  x.  0 ) )
9662, 16, 17syl2an 485 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
9796mul01d 9850 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  0 )  =  0 )
9883, 97sylan2 482 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  ( ( A `  k )  x.  0 )  =  0 )
9995, 98eqtrd 2505 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  ( ( A `  k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  (
z ^ ( k  -  1 ) ) ) ) )  =  0 )
100 fzfid 12224 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
10161, 76, 99, 100fsumss 13868 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 1 ... N
) ( ( A `
 k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  (
z ^ ( k  -  1 ) ) ) ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ ( k  - 
1 ) ) ) ) ) )
102 elfznn0 11913 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( 0 ... ( N  -  1 ) )  ->  j  e.  NN0 )
103102adantl 473 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  j  e.  NN0 )
104103nn0cnd 10951 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  j  e.  CC )
105 ax-1cn 9615 . . . . . . . . . . . . 13  |-  1  e.  CC
106 pncan 9901 . . . . . . . . . . . . 13  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( ( j  +  1 )  -  1 )  =  j )
107104, 105, 106sylancl 675 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( j  +  1 )  -  1 )  =  j )
108107oveq2d 6324 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
z ^ ( ( j  +  1 )  -  1 ) )  =  ( z ^
j ) )
109108oveq2d 6324 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( j  +  1 )  x.  ( z ^ ( ( j  +  1 )  - 
1 ) ) )  =  ( ( j  +  1 )  x.  ( z ^ j
) ) )
110109oveq2d 6324 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( A `  (
j  +  1 ) )  x.  ( ( j  +  1 )  x.  ( z ^
( ( j  +  1 )  -  1 ) ) ) )  =  ( ( A `
 ( j  +  1 ) )  x.  ( ( j  +  1 )  x.  (
z ^ j ) ) ) )
11115ad2antrr 740 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  A : NN0 --> CC )
112 peano2nn0 10934 . . . . . . . . . . . . 13  |-  ( j  e.  NN0  ->  ( j  +  1 )  e. 
NN0 )
113102, 112syl 17 . . . . . . . . . . . 12  |-  ( j  e.  ( 0 ... ( N  -  1 ) )  ->  (
j  +  1 )  e.  NN0 )
114113adantl 473 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
j  +  1 )  e.  NN0 )
115111, 114ffvelrnd 6038 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( A `  ( j  +  1 ) )  e.  CC )
116114nn0cnd 10951 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
j  +  1 )  e.  CC )
117 simplr 770 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  z  e.  CC )
118117, 103expcld 12454 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
z ^ j )  e.  CC )
119115, 116, 118mulassd 9684 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( A `  ( j  +  1 ) )  x.  (
j  +  1 ) )  x.  ( z ^ j ) )  =  ( ( A `
 ( j  +  1 ) )  x.  ( ( j  +  1 )  x.  (
z ^ j ) ) ) )
120115, 116mulcomd 9682 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( A `  (
j  +  1 ) )  x.  ( j  +  1 ) )  =  ( ( j  +  1 )  x.  ( A `  (
j  +  1 ) ) ) )
121120oveq1d 6323 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( A `  ( j  +  1 ) )  x.  (
j  +  1 ) )  x.  ( z ^ j ) )  =  ( ( ( j  +  1 )  x.  ( A `  ( j  +  1 ) ) )  x.  ( z ^ j
) ) )
122110, 119, 1213eqtr2d 2511 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( A `  (
j  +  1 ) )  x.  ( ( j  +  1 )  x.  ( z ^
( ( j  +  1 )  -  1 ) ) ) )  =  ( ( ( j  +  1 )  x.  ( A `  ( j  +  1 ) ) )  x.  ( z ^ j
) ) )
123122sumeq2dv 13846 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( ( A `
 ( j  +  1 ) )  x.  ( ( j  +  1 )  x.  (
z ^ ( ( j  +  1 )  -  1 ) ) ) )  =  sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( ( ( j  +  1 )  x.  ( A `  ( j  +  1 ) ) )  x.  ( z ^ j ) ) )
124 1m1e0 10700 . . . . . . . . 9  |-  ( 1  -  1 )  =  0
125124oveq1i 6318 . . . . . . . 8  |-  ( ( 1  -  1 ) ... ( N  - 
1 ) )  =  ( 0 ... ( N  -  1 ) )
126125sumeq1i 13841 . . . . . . 7  |-  sum_ j  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ( ( A `
 ( j  +  1 ) )  x.  ( ( j  +  1 )  x.  (
z ^ ( ( j  +  1 )  -  1 ) ) ) )  =  sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( ( A `  (
j  +  1 ) )  x.  ( ( j  +  1 )  x.  ( z ^
( ( j  +  1 )  -  1 ) ) ) )
127 oveq1 6315 . . . . . . . . . 10  |-  ( k  =  j  ->  (
k  +  1 )  =  ( j  +  1 ) )
128127fveq2d 5883 . . . . . . . . . 10  |-  ( k  =  j  ->  ( A `  ( k  +  1 ) )  =  ( A `  ( j  +  1 ) ) )
129127, 128oveq12d 6326 . . . . . . . . 9  |-  ( k  =  j  ->  (
( k  +  1 )  x.  ( A `
 ( k  +  1 ) ) )  =  ( ( j  +  1 )  x.  ( A `  (
j  +  1 ) ) ) )
130 oveq2 6316 . . . . . . . . 9  |-  ( k  =  j  ->  (
z ^ k )  =  ( z ^
j ) )
131129, 130oveq12d 6326 . . . . . . . 8  |-  ( k  =  j  ->  (
( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( z ^ k ) )  =  ( ( ( j  +  1 )  x.  ( A `  ( j  +  1 ) ) )  x.  ( z ^ j
) ) )
132131cbvsumv 13839 . . . . . . 7  |-  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( z ^ k
) )  =  sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( ( ( j  +  1 )  x.  ( A `  ( j  +  1 ) ) )  x.  ( z ^ j ) )
133123, 126, 1323eqtr4g 2530 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ j  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ( ( A `
 ( j  +  1 ) )  x.  ( ( j  +  1 )  x.  (
z ^ ( ( j  +  1 )  -  1 ) ) ) )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( z ^ k ) ) )
134 1zzd 10992 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  1  e.  ZZ )
13585adantr 472 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  N  e. 
NN0 )
136135nn0zd 11061 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  N  e.  ZZ )
13764, 74mulcld 9681 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  (
( A `  k
)  x.  ( k  x.  ( z ^
( k  -  1 ) ) ) )  e.  CC )
138 fveq2 5879 . . . . . . . 8  |-  ( k  =  ( j  +  1 )  ->  ( A `  k )  =  ( A `  ( j  +  1 ) ) )
139 id 22 . . . . . . . . 9  |-  ( k  =  ( j  +  1 )  ->  k  =  ( j  +  1 ) )
140 oveq1 6315 . . . . . . . . . 10  |-  ( k  =  ( j  +  1 )  ->  (
k  -  1 )  =  ( ( j  +  1 )  - 
1 ) )
141140oveq2d 6324 . . . . . . . . 9  |-  ( k  =  ( j  +  1 )  ->  (
z ^ ( k  -  1 ) )  =  ( z ^
( ( j  +  1 )  -  1 ) ) )
142139, 141oveq12d 6326 . . . . . . . 8  |-  ( k  =  ( j  +  1 )  ->  (
k  x.  ( z ^ ( k  - 
1 ) ) )  =  ( ( j  +  1 )  x.  ( z ^ (
( j  +  1 )  -  1 ) ) ) )
143138, 142oveq12d 6326 . . . . . . 7  |-  ( k  =  ( j  +  1 )  ->  (
( A `  k
)  x.  ( k  x.  ( z ^
( k  -  1 ) ) ) )  =  ( ( A `
 ( j  +  1 ) )  x.  ( ( j  +  1 )  x.  (
z ^ ( ( j  +  1 )  -  1 ) ) ) ) )
144134, 134, 136, 137, 143fsumshftm 13919 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 1 ... N
) ( ( A `
 k )  x.  ( k  x.  (
z ^ ( k  -  1 ) ) ) )  =  sum_ j  e.  ( (
1  -  1 ) ... ( N  - 
1 ) ) ( ( A `  (
j  +  1 ) )  x.  ( ( j  +  1 )  x.  ( z ^
( ( j  +  1 )  -  1 ) ) ) ) )
145 elfznn0 11913 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( N  -  1 ) )  ->  k  e.  NN0 )
146145adantl 473 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  k  e.  NN0 )
147 ovex 6336 . . . . . . . . 9  |-  ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  e. 
_V
148 dvply1.b . . . . . . . . . 10  |-  B  =  ( k  e.  NN0  |->  ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) ) )
149148fvmpt2 5972 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  e.  _V )  ->  ( B `  k
)  =  ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) ) )
150146, 147, 149sylancl 675 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( B `  k )  =  ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) ) )
151150oveq1d 6323 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( B `  k
)  x.  ( z ^ k ) )  =  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( z ^ k
) ) )
152151sumeq2dv 13846 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( B `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( z ^ k ) ) )
153133, 144, 1523eqtr4d 2515 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 1 ... N
) ( ( A `
 k )  x.  ( k  x.  (
z ^ ( k  -  1 ) ) ) )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( B `  k
)  x.  ( z ^ k ) ) )
15458, 101, 1533eqtr3d 2513 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  (
z ^ ( k  -  1 ) ) ) ) )  = 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( B `  k )  x.  (
z ^ k ) ) )
155154mpteq2dva 4482 . . 3  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( B `  k
)  x.  ( z ^ k ) ) ) )
156 dvply1.g . . 3  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
157155, 156eqtr4d 2508 . 2  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) ) ) )  =  G )
1582, 51, 1573eqtrd 2509 1  |-  ( ph  ->  ( CC  _D  F
)  =  G )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   _Vcvv 3031    \ cdif 3387    C_ wss 3390   ifcif 3872   {cpr 3961    |-> cmpt 4454   -->wf 5585   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    - cmin 9880   NNcn 10631   NN0cn0 10893   ZZ>=cuz 11182   ...cfz 11810   ^cexp 12310   sum_csu 13829   ↾t crest 15397   TopOpenctopn 15398  ℂfldccnfld 19047   Topctop 19994    _D cdv 22897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-icc 11667  df-fz 11811  df-fzo 11943  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-sum 13830  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-limc 22900  df-dv 22901
This theorem is referenced by:  dvply2g  23317
  Copyright terms: Public domain W3C validator