MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnfval Unicode version

Theorem dvnfval 19761
Description: Value of the iterated derivative. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
dvnfval.1  |-  G  =  ( x  e.  _V  |->  ( S  _D  x
) )
Assertion
Ref Expression
dvnfval  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  D n F )  =  seq  0 ( ( G  o.  1st ) ,  ( NN0  X. 
{ F } ) ) )
Distinct variable groups:    x, F    x, S
Allowed substitution hint:    G( x)

Proof of Theorem dvnfval
Dummy variables  f 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvn 19708 . . 3  |-  D n  =  ( s  e. 
~P CC ,  f  e.  ( CC  ^pm  s )  |->  seq  0
( ( ( x  e.  _V  |->  ( s  _D  x ) )  o.  1st ) ,  ( NN0  X.  {
f } ) ) )
21a1i 11 . 2  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  D n  =  ( s  e.  ~P CC ,  f  e.  ( CC  ^pm  s )  |->  seq  0
( ( ( x  e.  _V  |->  ( s  _D  x ) )  o.  1st ) ,  ( NN0  X.  {
f } ) ) ) )
3 simprl 733 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F  e.  ( CC 
^pm  S ) )  /\  ( s  =  S  /\  f  =  F ) )  -> 
s  =  S )
43oveq1d 6055 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F  e.  ( CC 
^pm  S ) )  /\  ( s  =  S  /\  f  =  F ) )  -> 
( s  _D  x
)  =  ( S  _D  x ) )
54mpteq2dv 4256 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F  e.  ( CC 
^pm  S ) )  /\  ( s  =  S  /\  f  =  F ) )  -> 
( x  e.  _V  |->  ( s  _D  x
) )  =  ( x  e.  _V  |->  ( S  _D  x ) ) )
6 dvnfval.1 . . . . . 6  |-  G  =  ( x  e.  _V  |->  ( S  _D  x
) )
75, 6syl6eqr 2454 . . . . 5  |-  ( ( ( S  C_  CC  /\  F  e.  ( CC 
^pm  S ) )  /\  ( s  =  S  /\  f  =  F ) )  -> 
( x  e.  _V  |->  ( s  _D  x
) )  =  G )
87coeq1d 4993 . . . 4  |-  ( ( ( S  C_  CC  /\  F  e.  ( CC 
^pm  S ) )  /\  ( s  =  S  /\  f  =  F ) )  -> 
( ( x  e. 
_V  |->  ( s  _D  x ) )  o. 
1st )  =  ( G  o.  1st )
)
98seqeq2d 11285 . . 3  |-  ( ( ( S  C_  CC  /\  F  e.  ( CC 
^pm  S ) )  /\  ( s  =  S  /\  f  =  F ) )  ->  seq  0 ( ( ( x  e.  _V  |->  ( s  _D  x ) )  o.  1st ) ,  ( NN0  X.  { f } ) )  =  seq  0
( ( G  o.  1st ) ,  ( NN0 
X.  { f } ) ) )
10 simprr 734 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F  e.  ( CC 
^pm  S ) )  /\  ( s  =  S  /\  f  =  F ) )  -> 
f  =  F )
1110sneqd 3787 . . . . 5  |-  ( ( ( S  C_  CC  /\  F  e.  ( CC 
^pm  S ) )  /\  ( s  =  S  /\  f  =  F ) )  ->  { f }  =  { F } )
1211xpeq2d 4861 . . . 4  |-  ( ( ( S  C_  CC  /\  F  e.  ( CC 
^pm  S ) )  /\  ( s  =  S  /\  f  =  F ) )  -> 
( NN0  X.  { f } )  =  ( NN0  X.  { F } ) )
1312seqeq3d 11286 . . 3  |-  ( ( ( S  C_  CC  /\  F  e.  ( CC 
^pm  S ) )  /\  ( s  =  S  /\  f  =  F ) )  ->  seq  0 ( ( G  o.  1st ) ,  ( NN0  X.  {
f } ) )  =  seq  0 ( ( G  o.  1st ) ,  ( NN0  X. 
{ F } ) ) )
149, 13eqtrd 2436 . 2  |-  ( ( ( S  C_  CC  /\  F  e.  ( CC 
^pm  S ) )  /\  ( s  =  S  /\  f  =  F ) )  ->  seq  0 ( ( ( x  e.  _V  |->  ( s  _D  x ) )  o.  1st ) ,  ( NN0  X.  { f } ) )  =  seq  0
( ( G  o.  1st ) ,  ( NN0 
X.  { F }
) ) )
15 simpr 448 . . 3  |-  ( ( ( S  C_  CC  /\  F  e.  ( CC 
^pm  S ) )  /\  s  =  S )  ->  s  =  S )
1615oveq2d 6056 . 2  |-  ( ( ( S  C_  CC  /\  F  e.  ( CC 
^pm  S ) )  /\  s  =  S )  ->  ( CC  ^pm  s )  =  ( CC  ^pm  S )
)
17 simpl 444 . . 3  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  S  C_  CC )
18 cnex 9027 . . . 4  |-  CC  e.  _V
1918elpw2 4324 . . 3  |-  ( S  e.  ~P CC  <->  S  C_  CC )
2017, 19sylibr 204 . 2  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  S  e.  ~P CC )
21 simpr 448 . 2  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  F  e.  ( CC  ^pm  S
) )
22 seqex 11280 . . 3  |-  seq  0
( ( G  o.  1st ) ,  ( NN0 
X.  { F }
) )  e.  _V
2322a1i 11 . 2  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  seq  0 ( ( G  o.  1st ) ,  ( NN0  X.  { F } ) )  e. 
_V )
242, 14, 16, 20, 21, 23ovmpt2dx 6159 1  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  D n F )  =  seq  0 ( ( G  o.  1st ) ,  ( NN0  X. 
{ F } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916    C_ wss 3280   ~Pcpw 3759   {csn 3774    e. cmpt 4226    X. cxp 4835    o. ccom 4841  (class class class)co 6040    e. cmpt2 6042   1stc1st 6306    ^pm cpm 6978   CCcc 8944   0cc0 8946   NN0cn0 10177    seq cseq 11278    _D cdv 19703    D ncdvn 19704
This theorem is referenced by:  dvnff  19762  dvn0  19763  dvnp1  19764
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-recs 6592  df-rdg 6627  df-seq 11279  df-dvn 19708
  Copyright terms: Public domain W3C validator