MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnff Structured version   Unicode version

Theorem dvnff 22754
Description: The iterated derivative is a function. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
dvnff  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  Dn F ) : NN0 --> ( CC 
^pm  dom  F ) )

Proof of Theorem dvnff
Dummy variables  k  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11193 . . 3  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 10949 . . 3  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  0  e.  ZZ )
3 fvconst2g 6133 . . . . 5  |-  ( ( F  e.  ( CC 
^pm  S )  /\  k  e.  NN0 )  -> 
( ( NN0  X.  { F } ) `  k )  =  F )
43adantll 718 . . . 4  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  k  e.  NN0 )  -> 
( ( NN0  X.  { F } ) `  k )  =  F )
5 dmexg 6738 . . . . . 6  |-  ( F  e.  ( CC  ^pm  S )  ->  dom  F  e. 
_V )
65ad2antlr 731 . . . . 5  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  k  e.  NN0 )  ->  dom  F  e.  _V )
7 cnex 9619 . . . . . 6  |-  CC  e.  _V
87a1i 11 . . . . 5  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  k  e.  NN0 )  ->  CC  e.  _V )
9 elpm2g 7496 . . . . . . . . 9  |-  ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  -> 
( F  e.  ( CC  ^pm  S )  <->  ( F : dom  F --> CC  /\  dom  F  C_  S ) ) )
107, 9mpan 674 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  ( F  e.  ( CC  ^pm  S
)  <->  ( F : dom  F --> CC  /\  dom  F 
C_  S ) ) )
1110biimpa 486 . . . . . . 7  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( F : dom  F --> CC  /\  dom  F  C_  S )
)
1211simpld 460 . . . . . 6  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  F : dom  F --> CC )
1312adantr 466 . . . . 5  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  k  e.  NN0 )  ->  F : dom  F --> CC )
14 fpmg 7505 . . . . 5  |-  ( ( dom  F  e.  _V  /\  CC  e.  _V  /\  F : dom  F --> CC )  ->  F  e.  ( CC  ^pm  dom  F ) )
156, 8, 13, 14syl3anc 1264 . . . 4  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  k  e.  NN0 )  ->  F  e.  ( CC  ^pm 
dom  F ) )
164, 15eqeltrd 2517 . . 3  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  k  e.  NN0 )  -> 
( ( NN0  X.  { F } ) `  k )  e.  ( CC  ^pm  dom  F ) )
17 vex 3090 . . . . . 6  |-  k  e. 
_V
18 vex 3090 . . . . . 6  |-  n  e. 
_V
1917, 18algrflem 6916 . . . . 5  |-  ( k ( ( x  e. 
_V  |->  ( S  _D  x ) )  o. 
1st ) n )  =  ( ( x  e.  _V  |->  ( S  _D  x ) ) `
 k )
20 oveq2 6313 . . . . . . 7  |-  ( x  =  k  ->  ( S  _D  x )  =  ( S  _D  k
) )
21 eqid 2429 . . . . . . 7  |-  ( x  e.  _V  |->  ( S  _D  x ) )  =  ( x  e. 
_V  |->  ( S  _D  x ) )
22 ovex 6333 . . . . . . 7  |-  ( S  _D  k )  e. 
_V
2320, 21, 22fvmpt 5964 . . . . . 6  |-  ( k  e.  _V  ->  (
( x  e.  _V  |->  ( S  _D  x
) ) `  k
)  =  ( S  _D  k ) )
2417, 23ax-mp 5 . . . . 5  |-  ( ( x  e.  _V  |->  ( S  _D  x ) ) `  k )  =  ( S  _D  k )
2519, 24eqtri 2458 . . . 4  |-  ( k ( ( x  e. 
_V  |->  ( S  _D  x ) )  o. 
1st ) n )  =  ( S  _D  k )
267a1i 11 . . . . 5  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( k  e.  ( CC  ^pm  dom  F )  /\  n  e.  ( CC  ^pm  dom  F ) ) )  ->  CC  e.  _V )
275ad2antlr 731 . . . . 5  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( k  e.  ( CC  ^pm  dom  F )  /\  n  e.  ( CC  ^pm  dom  F ) ) )  ->  dom  F  e.  _V )
28 dvfg 22738 . . . . . 6  |-  ( S  e.  { RR ,  CC }  ->  ( S  _D  k ) : dom  ( S  _D  k
) --> CC )
2928ad2antrr 730 . . . . 5  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( k  e.  ( CC  ^pm  dom  F )  /\  n  e.  ( CC  ^pm  dom  F ) ) )  ->  ( S  _D  k ) : dom  ( S  _D  k ) --> CC )
30 recnprss 22736 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
3130ad2antrr 730 . . . . . . 7  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( k  e.  ( CC  ^pm  dom  F )  /\  n  e.  ( CC  ^pm  dom  F ) ) )  ->  S  C_  CC )
32 simprl 762 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( k  e.  ( CC  ^pm  dom  F )  /\  n  e.  ( CC  ^pm  dom  F ) ) )  ->  k  e.  ( CC  ^pm  dom  F ) )
33 elpm2g 7496 . . . . . . . . . 10  |-  ( ( CC  e.  _V  /\  dom  F  e.  _V )  ->  ( k  e.  ( CC  ^pm  dom  F )  <-> 
( k : dom  k
--> CC  /\  dom  k  C_ 
dom  F ) ) )
347, 27, 33sylancr 667 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( k  e.  ( CC  ^pm  dom  F )  /\  n  e.  ( CC  ^pm  dom  F ) ) )  ->  (
k  e.  ( CC 
^pm  dom  F )  <->  ( k : dom  k --> CC  /\  dom  k  C_  dom  F
) ) )
3532, 34mpbid 213 . . . . . . . 8  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( k  e.  ( CC  ^pm  dom  F )  /\  n  e.  ( CC  ^pm  dom  F ) ) )  ->  (
k : dom  k --> CC  /\  dom  k  C_  dom  F ) )
3635simpld 460 . . . . . . 7  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( k  e.  ( CC  ^pm  dom  F )  /\  n  e.  ( CC  ^pm  dom  F ) ) )  ->  k : dom  k --> CC )
3735simprd 464 . . . . . . . 8  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( k  e.  ( CC  ^pm  dom  F )  /\  n  e.  ( CC  ^pm  dom  F ) ) )  ->  dom  k  C_  dom  F )
3811simprd 464 . . . . . . . . 9  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  dom  F 
C_  S )
3938adantr 466 . . . . . . . 8  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( k  e.  ( CC  ^pm  dom  F )  /\  n  e.  ( CC  ^pm  dom  F ) ) )  ->  dom  F 
C_  S )
4037, 39sstrd 3480 . . . . . . 7  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( k  e.  ( CC  ^pm  dom  F )  /\  n  e.  ( CC  ^pm  dom  F ) ) )  ->  dom  k  C_  S )
4131, 36, 40dvbss 22733 . . . . . 6  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( k  e.  ( CC  ^pm  dom  F )  /\  n  e.  ( CC  ^pm  dom  F ) ) )  ->  dom  ( S  _D  k
)  C_  dom  k )
4241, 37sstrd 3480 . . . . 5  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( k  e.  ( CC  ^pm  dom  F )  /\  n  e.  ( CC  ^pm  dom  F ) ) )  ->  dom  ( S  _D  k
)  C_  dom  F )
43 elpm2r 7497 . . . . 5  |-  ( ( ( CC  e.  _V  /\ 
dom  F  e.  _V )  /\  ( ( S  _D  k ) : dom  ( S  _D  k ) --> CC  /\  dom  ( S  _D  k
)  C_  dom  F ) )  ->  ( S  _D  k )  e.  ( CC  ^pm  dom  F ) )
4426, 27, 29, 42, 43syl22anc 1265 . . . 4  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( k  e.  ( CC  ^pm  dom  F )  /\  n  e.  ( CC  ^pm  dom  F ) ) )  ->  ( S  _D  k )  e.  ( CC  ^pm  dom  F ) )
4525, 44syl5eqel 2521 . . 3  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( k  e.  ( CC  ^pm  dom  F )  /\  n  e.  ( CC  ^pm  dom  F ) ) )  ->  (
k ( ( x  e.  _V  |->  ( S  _D  x ) )  o.  1st ) n )  e.  ( CC 
^pm  dom  F ) )
461, 2, 16, 45seqf 12231 . 2  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  seq 0 ( ( ( x  e.  _V  |->  ( S  _D  x ) )  o.  1st ) ,  ( NN0  X.  { F } ) ) : NN0 --> ( CC 
^pm  dom  F ) )
4721dvnfval 22753 . . . 4  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  Dn F )  =  seq 0 ( ( ( x  e. 
_V  |->  ( S  _D  x ) )  o. 
1st ) ,  ( NN0  X.  { F } ) ) )
4830, 47sylan 473 . . 3  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  Dn F )  =  seq 0 ( ( ( x  e. 
_V  |->  ( S  _D  x ) )  o. 
1st ) ,  ( NN0  X.  { F } ) ) )
4948feq1d 5732 . 2  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( S  Dn
F ) : NN0 --> ( CC  ^pm  dom  F )  <->  seq 0 ( ( ( x  e.  _V  |->  ( S  _D  x ) )  o.  1st ) ,  ( NN0  X.  { F } ) ) : NN0 --> ( CC 
^pm  dom  F ) ) )
5046, 49mpbird 235 1  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  Dn F ) : NN0 --> ( CC 
^pm  dom  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870   _Vcvv 3087    C_ wss 3442   {csn 4002   {cpr 4004    |-> cmpt 4484    X. cxp 4852   dom cdm 4854    o. ccom 4858   -->wf 5597   ` cfv 5601  (class class class)co 6305   1stc1st 6805    ^pm cpm 7481   CCcc 9536   RRcr 9537   0cc0 9538   NN0cn0 10869    seqcseq 12210    _D cdv 22695    Dncdvn 22696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-map 7482  df-pm 7483  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fi 7931  df-sup 7962  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-icc 11642  df-fz 11783  df-seq 12211  df-exp 12270  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-plusg 15165  df-mulr 15166  df-starv 15167  df-tset 15171  df-ple 15172  df-ds 15174  df-unif 15175  df-rest 15280  df-topn 15281  df-topgen 15301  df-psmet 18897  df-xmet 18898  df-met 18899  df-bl 18900  df-mopn 18901  df-fbas 18902  df-fg 18903  df-cnfld 18906  df-top 19852  df-bases 19853  df-topon 19854  df-topsp 19855  df-cld 19965  df-ntr 19966  df-cls 19967  df-nei 20045  df-lp 20083  df-perf 20084  df-cnp 20175  df-haus 20262  df-fil 20792  df-fm 20884  df-flim 20885  df-flf 20886  df-xms 21266  df-ms 21267  df-limc 22698  df-dv 22699  df-dvn 22700
This theorem is referenced by:  dvnf  22758  dvnbss  22759  dvnadd  22760
  Copyright terms: Public domain W3C validator