MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnf Structured version   Unicode version

Theorem dvnf 21529
Description: The N-times derivative is a function. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
dvnf  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  N  e.  NN0 )  ->  ( ( S  Dn F ) `
 N ) : dom  ( ( S  Dn F ) `
 N ) --> CC )

Proof of Theorem dvnf
StepHypRef Expression
1 dvnff 21525 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  Dn F ) : NN0 --> ( CC 
^pm  dom  F ) )
21ffvelrnda 5947 . . . 4  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  N  e.  NN0 )  -> 
( ( S  Dn F ) `  N )  e.  ( CC  ^pm  dom  F ) )
323impa 1183 . . 3  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  N  e.  NN0 )  ->  ( ( S  Dn F ) `
 N )  e.  ( CC  ^pm  dom  F ) )
4 cnex 9469 . . . 4  |-  CC  e.  _V
5 simp1 988 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  N  e.  NN0 )  ->  S  e.  { RR ,  CC }
)
6 simp2 989 . . . . . . 7  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  N  e.  NN0 )  ->  F  e.  ( CC  ^pm  S ) )
7 elpm2g 7334 . . . . . . . 8  |-  ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  -> 
( F  e.  ( CC  ^pm  S )  <->  ( F : dom  F --> CC  /\  dom  F  C_  S ) ) )
84, 5, 7sylancr 663 . . . . . . 7  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  N  e.  NN0 )  ->  ( F  e.  ( CC  ^pm  S
)  <->  ( F : dom  F --> CC  /\  dom  F 
C_  S ) ) )
96, 8mpbid 210 . . . . . 6  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  N  e.  NN0 )  ->  ( F : dom  F --> CC  /\  dom  F  C_  S )
)
109simprd 463 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  N  e.  NN0 )  ->  dom  F  C_  S )
115, 10ssexd 4542 . . . 4  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  N  e.  NN0 )  ->  dom  F  e. 
_V )
12 elpm2g 7334 . . . 4  |-  ( ( CC  e.  _V  /\  dom  F  e.  _V )  ->  ( ( ( S  Dn F ) `
 N )  e.  ( CC  ^pm  dom  F )  <->  ( ( ( S  Dn F ) `  N ) : dom  ( ( S  Dn F ) `  N ) --> CC  /\  dom  (
( S  Dn
F ) `  N
)  C_  dom  F ) ) )
134, 11, 12sylancr 663 . . 3  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  N  e.  NN0 )  ->  ( (
( S  Dn
F ) `  N
)  e.  ( CC 
^pm  dom  F )  <->  ( (
( S  Dn
F ) `  N
) : dom  (
( S  Dn
F ) `  N
) --> CC  /\  dom  ( ( S  Dn F ) `  N )  C_  dom  F ) ) )
143, 13mpbid 210 . 2  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  N  e.  NN0 )  ->  ( (
( S  Dn
F ) `  N
) : dom  (
( S  Dn
F ) `  N
) --> CC  /\  dom  ( ( S  Dn F ) `  N )  C_  dom  F ) )
1514simpld 459 1  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  N  e.  NN0 )  ->  ( ( S  Dn F ) `
 N ) : dom  ( ( S  Dn F ) `
 N ) --> CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    e. wcel 1758   _Vcvv 3072    C_ wss 3431   {cpr 3982   dom cdm 4943   -->wf 5517   ` cfv 5521  (class class class)co 6195    ^pm cpm 7320   CCcc 9386   RRcr 9387   NN0cn0 10685    Dncdvn 21467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-inf2 7953  ax-cnex 9444  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464  ax-pre-mulgt0 9465  ax-pre-sup 9466
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rmo 2804  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-iin 4277  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-om 6582  df-1st 6682  df-2nd 6683  df-recs 6937  df-rdg 6971  df-1o 7025  df-oadd 7029  df-er 7206  df-map 7321  df-pm 7322  df-en 7416  df-dom 7417  df-sdom 7418  df-fin 7419  df-fi 7767  df-sup 7797  df-pnf 9526  df-mnf 9527  df-xr 9528  df-ltxr 9529  df-le 9530  df-sub 9703  df-neg 9704  df-div 10100  df-nn 10429  df-2 10486  df-3 10487  df-4 10488  df-5 10489  df-6 10490  df-7 10491  df-8 10492  df-9 10493  df-10 10494  df-n0 10686  df-z 10753  df-dec 10862  df-uz 10968  df-q 11060  df-rp 11098  df-xneg 11195  df-xadd 11196  df-xmul 11197  df-icc 11413  df-fz 11550  df-seq 11919  df-exp 11978  df-cj 12701  df-re 12702  df-im 12703  df-sqr 12837  df-abs 12838  df-struct 14289  df-ndx 14290  df-slot 14291  df-base 14292  df-plusg 14365  df-mulr 14366  df-starv 14367  df-tset 14371  df-ple 14372  df-ds 14374  df-unif 14375  df-rest 14475  df-topn 14476  df-topgen 14496  df-psmet 17929  df-xmet 17930  df-met 17931  df-bl 17932  df-mopn 17933  df-fbas 17934  df-fg 17935  df-cnfld 17939  df-top 18630  df-bases 18632  df-topon 18633  df-topsp 18634  df-cld 18750  df-ntr 18751  df-cls 18752  df-nei 18829  df-lp 18867  df-perf 18868  df-cnp 18959  df-haus 19046  df-fil 19546  df-fm 19638  df-flim 19639  df-flf 19640  df-xms 20022  df-ms 20023  df-limc 21469  df-dv 21470  df-dvn 21471
This theorem is referenced by:  dvn2bss  21532  dvnres  21533  cpnord  21537  taylfvallem1  21950  tayl0  21955  taylply2  21961  taylply  21962  dvtaylp  21963  dvntaylp  21964  dvntaylp0  21965  taylthlem1  21966  taylthlem2  21967
  Copyright terms: Public domain W3C validator