MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvne0 Structured version   Unicode version

Theorem dvne0 21324
Description: A function on a closed interval with nonzero derivative is either monotone increasing or monotone decreasing. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
dvne0.a  |-  ( ph  ->  A  e.  RR )
dvne0.b  |-  ( ph  ->  B  e.  RR )
dvne0.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
dvne0.d  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
dvne0.z  |-  ( ph  ->  -.  0  e.  ran  ( RR  _D  F
) )
Assertion
Ref Expression
dvne0  |-  ( ph  ->  ( F  Isom  <  ,  <  ( ( A [,] B ) ,  ran  F )  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) )

Proof of Theorem dvne0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvne0.z . . . . . . . . . . . 12  |-  ( ph  ->  -.  0  e.  ran  ( RR  _D  F
) )
2 eleq1 2493 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
x  e.  ran  ( RR  _D  F )  <->  0  e.  ran  ( RR  _D  F
) ) )
32notbid 294 . . . . . . . . . . . 12  |-  ( x  =  0  ->  ( -.  x  e.  ran  ( RR  _D  F
)  <->  -.  0  e.  ran  ( RR  _D  F
) ) )
41, 3syl5ibrcom 222 . . . . . . . . . . 11  |-  ( ph  ->  ( x  =  0  ->  -.  x  e.  ran  ( RR  _D  F
) ) )
54necon2ad 2649 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ran  ( RR  _D  F
)  ->  x  =/=  0 ) )
65imp 429 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ran  ( RR  _D  F
) )  ->  x  =/=  0 )
7 dvne0.f . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
8 cncff 20310 . . . . . . . . . . . . . . 15  |-  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  F :
( A [,] B
) --> RR )
97, 8syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : ( A [,] B ) --> RR )
10 dvne0.a . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  RR )
11 dvne0.b . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  RR )
12 iccssre 11364 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
1310, 11, 12syl2anc 654 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A [,] B
)  C_  RR )
14 dvfre 21266 . . . . . . . . . . . . . 14  |-  ( ( F : ( A [,] B ) --> RR 
/\  ( A [,] B )  C_  RR )  ->  ( RR  _D  F ) : dom  ( RR  _D  F
) --> RR )
159, 13, 14syl2anc 654 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
16 frn 5553 . . . . . . . . . . . . 13  |-  ( ( RR  _D  F ) : dom  ( RR 
_D  F ) --> RR 
->  ran  ( RR  _D  F )  C_  RR )
1715, 16syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ran  ( RR  _D  F )  C_  RR )
1817sselda 3344 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ran  ( RR  _D  F
) )  ->  x  e.  RR )
19 0re 9373 . . . . . . . . . . 11  |-  0  e.  RR
20 lttri2 9444 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  0  e.  RR )  ->  ( x  =/=  0  <->  ( x  <  0  \/  0  <  x ) ) )
2118, 19, 20sylancl 655 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ran  ( RR  _D  F
) )  ->  (
x  =/=  0  <->  (
x  <  0  \/  0  <  x ) ) )
22 0xr 9417 . . . . . . . . . . . . . 14  |-  0  e.  RR*
23 elioomnf 11371 . . . . . . . . . . . . . 14  |-  ( 0  e.  RR*  ->  ( x  e.  ( -oo (,) 0 )  <->  ( x  e.  RR  /\  x  <  0 ) ) )
2422, 23ax-mp 5 . . . . . . . . . . . . 13  |-  ( x  e.  ( -oo (,) 0 )  <->  ( x  e.  RR  /\  x  <  0 ) )
2524baib 889 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  e.  ( -oo (,) 0 )  <->  x  <  0 ) )
26 elrp 10980 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  <->  ( x  e.  RR  /\  0  < 
x ) )
2726baib 889 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  e.  RR+  <->  0  <  x ) )
2825, 27orbi12d 702 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
( x  e.  ( -oo (,) 0 )  \/  x  e.  RR+ ) 
<->  ( x  <  0  \/  0  <  x ) ) )
2918, 28syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ran  ( RR  _D  F
) )  ->  (
( x  e.  ( -oo (,) 0 )  \/  x  e.  RR+ ) 
<->  ( x  <  0  \/  0  <  x ) ) )
3021, 29bitr4d 256 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ran  ( RR  _D  F
) )  ->  (
x  =/=  0  <->  (
x  e.  ( -oo (,) 0 )  \/  x  e.  RR+ ) ) )
316, 30mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ran  ( RR  _D  F
) )  ->  (
x  e.  ( -oo (,) 0 )  \/  x  e.  RR+ ) )
32 elun 3485 . . . . . . . 8  |-  ( x  e.  ( ( -oo (,) 0 )  u.  RR+ ) 
<->  ( x  e.  ( -oo (,) 0 )  \/  x  e.  RR+ ) )
3331, 32sylibr 212 . . . . . . 7  |-  ( (
ph  /\  x  e.  ran  ( RR  _D  F
) )  ->  x  e.  ( ( -oo (,) 0 )  u.  RR+ ) )
3433ex 434 . . . . . 6  |-  ( ph  ->  ( x  e.  ran  ( RR  _D  F
)  ->  x  e.  ( ( -oo (,) 0 )  u.  RR+ ) ) )
3534ssrdv 3350 . . . . 5  |-  ( ph  ->  ran  ( RR  _D  F )  C_  (
( -oo (,) 0 )  u.  RR+ ) )
36 disjssun 3724 . . . . 5  |-  ( ( ran  ( RR  _D  F )  i^i  ( -oo (,) 0 ) )  =  (/)  ->  ( ran  ( RR  _D  F
)  C_  ( ( -oo (,) 0 )  u.  RR+ )  <->  ran  ( RR  _D  F )  C_  RR+ )
)
3735, 36syl5ibcom 220 . . . 4  |-  ( ph  ->  ( ( ran  ( RR  _D  F )  i^i  ( -oo (,) 0
) )  =  (/)  ->  ran  ( RR  _D  F )  C_  RR+ )
)
3837imp 429 . . 3  |-  ( (
ph  /\  ( ran  ( RR  _D  F
)  i^i  ( -oo (,) 0 ) )  =  (/) )  ->  ran  ( RR  _D  F )  C_  RR+ )
3910adantr 462 . . . . 5  |-  ( (
ph  /\  ran  ( RR 
_D  F )  C_  RR+ )  ->  A  e.  RR )
4011adantr 462 . . . . 5  |-  ( (
ph  /\  ran  ( RR 
_D  F )  C_  RR+ )  ->  B  e.  RR )
417adantr 462 . . . . 5  |-  ( (
ph  /\  ran  ( RR 
_D  F )  C_  RR+ )  ->  F  e.  ( ( A [,] B ) -cn-> RR ) )
42 dvne0.d . . . . . . . . . 10  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
4342feq2d 5535 . . . . . . . . 9  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> RR  <->  ( RR  _D  F ) : ( A (,) B ) --> RR ) )
4415, 43mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> RR )
45 ffn 5547 . . . . . . . 8  |-  ( ( RR  _D  F ) : ( A (,) B ) --> RR  ->  ( RR  _D  F )  Fn  ( A (,) B ) )
4644, 45syl 16 . . . . . . 7  |-  ( ph  ->  ( RR  _D  F
)  Fn  ( A (,) B ) )
4746anim1i 563 . . . . . 6  |-  ( (
ph  /\  ran  ( RR 
_D  F )  C_  RR+ )  ->  ( ( RR  _D  F )  Fn  ( A (,) B
)  /\  ran  ( RR 
_D  F )  C_  RR+ ) )
48 df-f 5410 . . . . . 6  |-  ( ( RR  _D  F ) : ( A (,) B ) --> RR+  <->  ( ( RR  _D  F )  Fn  ( A (,) B
)  /\  ran  ( RR 
_D  F )  C_  RR+ ) )
4947, 48sylibr 212 . . . . 5  |-  ( (
ph  /\  ran  ( RR 
_D  F )  C_  RR+ )  ->  ( RR  _D  F ) : ( A (,) B ) -->
RR+ )
5039, 40, 41, 49dvgt0 21317 . . . 4  |-  ( (
ph  /\  ran  ( RR 
_D  F )  C_  RR+ )  ->  F  Isom  <  ,  <  ( ( A [,] B ) ,  ran  F ) )
5150orcd 392 . . 3  |-  ( (
ph  /\  ran  ( RR 
_D  F )  C_  RR+ )  ->  ( F  Isom  <  ,  <  (
( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) )
5238, 51syldan 467 . 2  |-  ( (
ph  /\  ( ran  ( RR  _D  F
)  i^i  ( -oo (,) 0 ) )  =  (/) )  ->  ( F 
Isom  <  ,  <  (
( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) )
53 n0 3634 . . . 4  |-  ( ( ran  ( RR  _D  F )  i^i  ( -oo (,) 0 ) )  =/=  (/)  <->  E. x  x  e.  ( ran  ( RR 
_D  F )  i^i  ( -oo (,) 0
) ) )
54 elin 3527 . . . . . 6  |-  ( x  e.  ( ran  ( RR  _D  F )  i^i  ( -oo (,) 0
) )  <->  ( x  e.  ran  ( RR  _D  F )  /\  x  e.  ( -oo (,) 0
) ) )
55 fvelrnb 5727 . . . . . . . . 9  |-  ( ( RR  _D  F )  Fn  ( A (,) B )  ->  (
x  e.  ran  ( RR  _D  F )  <->  E. y  e.  ( A (,) B
) ( ( RR 
_D  F ) `  y )  =  x ) )
5646, 55syl 16 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ran  ( RR  _D  F
)  <->  E. y  e.  ( A (,) B ) ( ( RR  _D  F ) `  y
)  =  x ) )
5710adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A (,) B
)  /\  ( ( RR  _D  F ) `  y )  e.  ( -oo (,) 0 ) ) )  ->  A  e.  RR )
5811adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A (,) B
)  /\  ( ( RR  _D  F ) `  y )  e.  ( -oo (,) 0 ) ) )  ->  B  e.  RR )
597adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A (,) B
)  /\  ( ( RR  _D  F ) `  y )  e.  ( -oo (,) 0 ) ) )  ->  F  e.  ( ( A [,] B ) -cn-> RR ) )
6046adantr 462 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  ( A (,) B
)  /\  ( ( RR  _D  F ) `  y )  e.  ( -oo (,) 0 ) ) )  ->  ( RR  _D  F )  Fn  ( A (,) B
) )
6144adantr 462 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( y  e.  ( A (,) B
)  /\  ( ( RR  _D  F ) `  y )  e.  ( -oo (,) 0 ) ) )  ->  ( RR  _D  F ) : ( A (,) B
) --> RR )
6261ffvelrnda 5831 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  z  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  z )  e.  RR )
631ad2antrr 718 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  z  e.  ( A (,) B ) )  ->  -.  0  e.  ran  ( RR  _D  F ) )
64 simplrl 752 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  y  e.  ( A (,) B
) )
65 simprl 748 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  z  e.  ( A (,) B
) )
66 ioossicc 11368 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A (,) B )  C_  ( A [,] B )
67 rescncf 20314 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A (,) B ) 
C_  ( A [,] B )  ->  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  ( F  |`  ( A (,) B
) )  e.  ( ( A (,) B
) -cn-> RR ) ) )
6866, 7, 67mpsyl 63 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( F  |`  ( A (,) B ) )  e.  ( ( A (,) B ) -cn-> RR ) )
6968ad2antrr 718 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  ( F  |`  ( A (,) B ) )  e.  ( ( A (,) B ) -cn-> RR ) )
70 ax-resscn 9326 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  RR  C_  CC
7170a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  RR  C_  CC )
72 fss 5555 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( F : ( A [,] B ) --> RR 
/\  RR  C_  CC )  ->  F : ( A [,] B ) --> CC )
739, 70, 72sylancl 655 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  F : ( A [,] B ) --> CC )
7466, 13syl5ss 3355 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( A (,) B
)  C_  RR )
75 eqid 2433 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
7675tgioo2 20221 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
7775, 76dvres 21227 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( RR  C_  CC  /\  F : ( A [,] B ) --> CC )  /\  ( ( A [,] B ) 
C_  RR  /\  ( A (,) B )  C_  RR ) )  ->  ( RR  _D  ( F  |`  ( A (,) B ) ) )  =  ( ( RR  _D  F
)  |`  ( ( int `  ( topGen `  ran  (,) )
) `  ( A (,) B ) ) ) )
7871, 73, 13, 74, 77syl22anc 1212 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( RR  _D  ( F  |`  ( A (,) B ) ) )  =  ( ( RR 
_D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A (,) B ) ) ) )
79 retop 20181 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( topGen ` 
ran  (,) )  e.  Top
80 iooretop 20186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( A (,) B )  e.  ( topGen `  ran  (,) )
81 isopn3i 18527 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( A (,) B )  e.  ( topGen `  ran  (,) )
)  ->  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A (,) B ) )  =  ( A (,) B ) )
8279, 80, 81mp2an 665 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( int `  ( topGen ` 
ran  (,) ) ) `  ( A (,) B ) )  =  ( A (,) B )
8382reseq2i 5094 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( RR  _D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A (,) B ) ) )  =  ( ( RR 
_D  F )  |`  ( A (,) B ) )
84 fnresdm 5508 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( RR  _D  F )  Fn  ( A (,) B )  ->  (
( RR  _D  F
)  |`  ( A (,) B ) )  =  ( RR  _D  F
) )
8546, 84syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A (,) B ) )  =  ( RR  _D  F ) )
8683, 85syl5eq 2477 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( ( RR  _D  F )  |`  (
( int `  ( topGen `
 ran  (,) )
) `  ( A (,) B ) ) )  =  ( RR  _D  F ) )
8778, 86eqtrd 2465 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( RR  _D  ( F  |`  ( A (,) B ) ) )  =  ( RR  _D  F ) )
8887dmeqd 5029 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  dom  ( RR  _D  ( F  |`  ( A (,) B ) ) )  =  dom  ( RR  _D  F ) )
8988, 42eqtrd 2465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  dom  ( RR  _D  ( F  |`  ( A (,) B ) ) )  =  ( A (,) B ) )
9089ad2antrr 718 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  dom  ( RR  _D  ( F  |`  ( A (,) B ) ) )  =  ( A (,) B ) )
9164, 65, 69, 90dvivth 21323 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( ( RR  _D  ( F  |`  ( A (,) B ) ) ) `  y ) [,] ( ( RR 
_D  ( F  |`  ( A (,) B ) ) ) `  z
) )  C_  ran  ( RR  _D  ( F  |`  ( A (,) B ) ) ) )
9287ad2antrr 718 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  ( RR  _D  ( F  |`  ( A (,) B ) ) )  =  ( RR  _D  F ) )
9392fveq1d 5681 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( RR  _D  ( F  |`  ( A (,) B ) ) ) `
 y )  =  ( ( RR  _D  F ) `  y
) )
9492fveq1d 5681 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( RR  _D  ( F  |`  ( A (,) B ) ) ) `
 z )  =  ( ( RR  _D  F ) `  z
) )
9593, 94oveq12d 6098 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( ( RR  _D  ( F  |`  ( A (,) B ) ) ) `  y ) [,] ( ( RR 
_D  ( F  |`  ( A (,) B ) ) ) `  z
) )  =  ( ( ( RR  _D  F ) `  y
) [,] ( ( RR  _D  F ) `
 z ) ) )
9692rneqd 5054 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  ran  ( RR  _D  ( F  |`  ( A (,) B ) ) )  =  ran  ( RR 
_D  F ) )
9791, 95, 963sstr3d 3386 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( ( RR  _D  F ) `  y
) [,] ( ( RR  _D  F ) `
 z ) ) 
C_  ran  ( RR  _D  F ) )
9819a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  0  e.  RR )
99 simplrr 753 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( RR  _D  F
) `  y )  e.  ( -oo (,) 0
) )
100 elioomnf 11371 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 0  e.  RR*  ->  ( ( ( RR  _D  F
) `  y )  e.  ( -oo (,) 0
)  <->  ( ( ( RR  _D  F ) `
 y )  e.  RR  /\  ( ( RR  _D  F ) `
 y )  <  0 ) ) )
10122, 100ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( RR  _D  F
) `  y )  e.  ( -oo (,) 0
)  <->  ( ( ( RR  _D  F ) `
 y )  e.  RR  /\  ( ( RR  _D  F ) `
 y )  <  0 ) )
10299, 101sylib 196 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( ( RR  _D  F ) `  y
)  e.  RR  /\  ( ( RR  _D  F ) `  y
)  <  0 ) )
103102simprd 460 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( RR  _D  F
) `  y )  <  0 )
104102simpld 456 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( RR  _D  F
) `  y )  e.  RR )
105 ltle 9450 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( RR  _D  F ) `  y
)  e.  RR  /\  0  e.  RR )  ->  ( ( ( RR 
_D  F ) `  y )  <  0  ->  ( ( RR  _D  F ) `  y
)  <_  0 ) )
106104, 19, 105sylancl 655 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( ( RR  _D  F ) `  y
)  <  0  ->  ( ( RR  _D  F
) `  y )  <_  0 ) )
107103, 106mpd 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( RR  _D  F
) `  y )  <_  0 )
108 simprr 749 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  0  <_  ( ( RR  _D  F ) `  z
) )
10965, 62syldan 467 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( RR  _D  F
) `  z )  e.  RR )
110 elicc2 11347 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( RR  _D  F ) `  y
)  e.  RR  /\  ( ( RR  _D  F ) `  z
)  e.  RR )  ->  ( 0  e.  ( ( ( RR 
_D  F ) `  y ) [,] (
( RR  _D  F
) `  z )
)  <->  ( 0  e.  RR  /\  ( ( RR  _D  F ) `
 y )  <_ 
0  /\  0  <_  ( ( RR  _D  F
) `  z )
) ) )
111104, 109, 110syl2anc 654 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
0  e.  ( ( ( RR  _D  F
) `  y ) [,] ( ( RR  _D  F ) `  z
) )  <->  ( 0  e.  RR  /\  (
( RR  _D  F
) `  y )  <_  0  /\  0  <_ 
( ( RR  _D  F ) `  z
) ) ) )
11298, 107, 108, 111mpbir3and 1164 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  0  e.  ( ( ( RR 
_D  F ) `  y ) [,] (
( RR  _D  F
) `  z )
) )
11397, 112sseldd 3345 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  0  e.  ran  ( RR  _D  F ) )
114113expr 610 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  z  e.  ( A (,) B ) )  ->  ( 0  <_  ( ( RR 
_D  F ) `  z )  ->  0  e.  ran  ( RR  _D  F ) ) )
11563, 114mtod 177 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  z  e.  ( A (,) B ) )  ->  -.  0  <_  ( ( RR  _D  F ) `  z
) )
116 ltnle 9441 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( RR  _D  F ) `  z
)  e.  RR  /\  0  e.  RR )  ->  ( ( ( RR 
_D  F ) `  z )  <  0  <->  -.  0  <_  ( ( RR  _D  F ) `  z ) ) )
11762, 19, 116sylancl 655 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  z  e.  ( A (,) B ) )  ->  ( (
( RR  _D  F
) `  z )  <  0  <->  -.  0  <_  ( ( RR  _D  F
) `  z )
) )
118115, 117mpbird 232 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  z  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  z )  <  0
)
119 elioomnf 11371 . . . . . . . . . . . . . . . . 17  |-  ( 0  e.  RR*  ->  ( ( ( RR  _D  F
) `  z )  e.  ( -oo (,) 0
)  <->  ( ( ( RR  _D  F ) `
 z )  e.  RR  /\  ( ( RR  _D  F ) `
 z )  <  0 ) ) )
12022, 119ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( ( RR  _D  F
) `  z )  e.  ( -oo (,) 0
)  <->  ( ( ( RR  _D  F ) `
 z )  e.  RR  /\  ( ( RR  _D  F ) `
 z )  <  0 ) )
12162, 118, 120sylanbrc 657 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 ) ) )  /\  z  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  z )  e.  ( -oo (,) 0 ) )
122121ralrimiva 2789 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  ( A (,) B
)  /\  ( ( RR  _D  F ) `  y )  e.  ( -oo (,) 0 ) ) )  ->  A. z  e.  ( A (,) B
) ( ( RR 
_D  F ) `  z )  e.  ( -oo (,) 0 ) )
123 ffnfv 5856 . . . . . . . . . . . . . 14  |-  ( ( RR  _D  F ) : ( A (,) B ) --> ( -oo (,) 0 )  <->  ( ( RR  _D  F )  Fn  ( A (,) B
)  /\  A. z  e.  ( A (,) B
) ( ( RR 
_D  F ) `  z )  e.  ( -oo (,) 0 ) ) )
12460, 122, 123sylanbrc 657 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A (,) B
)  /\  ( ( RR  _D  F ) `  y )  e.  ( -oo (,) 0 ) ) )  ->  ( RR  _D  F ) : ( A (,) B
) --> ( -oo (,) 0 ) )
12557, 58, 59, 124dvlt0 21318 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A (,) B
)  /\  ( ( RR  _D  F ) `  y )  e.  ( -oo (,) 0 ) ) )  ->  F  Isom  <  ,  `'  <  ( ( A [,] B
) ,  ran  F
) )
126125olcd 393 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A (,) B
)  /\  ( ( RR  _D  F ) `  y )  e.  ( -oo (,) 0 ) ) )  ->  ( F  Isom  <  ,  <  ( ( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) )
127126expr 610 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( (
( RR  _D  F
) `  y )  e.  ( -oo (,) 0
)  ->  ( F  Isom  <  ,  <  (
( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) ) )
128 eleq1 2493 . . . . . . . . . . 11  |-  ( ( ( RR  _D  F
) `  y )  =  x  ->  ( ( ( RR  _D  F
) `  y )  e.  ( -oo (,) 0
)  <->  x  e.  ( -oo (,) 0 ) ) )
129128imbi1d 317 . . . . . . . . . 10  |-  ( ( ( RR  _D  F
) `  y )  =  x  ->  ( ( ( ( RR  _D  F ) `  y
)  e.  ( -oo (,) 0 )  ->  ( F  Isom  <  ,  <  ( ( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) )  <->  ( x  e.  ( -oo (,) 0
)  ->  ( F  Isom  <  ,  <  (
( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) ) ) )
130127, 129syl5ibcom 220 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( (
( RR  _D  F
) `  y )  =  x  ->  ( x  e.  ( -oo (,) 0 )  ->  ( F  Isom  <  ,  <  ( ( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) ) ) )
131130rexlimdva 2831 . . . . . . . 8  |-  ( ph  ->  ( E. y  e.  ( A (,) B
) ( ( RR 
_D  F ) `  y )  =  x  ->  ( x  e.  ( -oo (,) 0
)  ->  ( F  Isom  <  ,  <  (
( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) ) ) )
13256, 131sylbid 215 . . . . . . 7  |-  ( ph  ->  ( x  e.  ran  ( RR  _D  F
)  ->  ( x  e.  ( -oo (,) 0
)  ->  ( F  Isom  <  ,  <  (
( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) ) ) )
133132imp3a 431 . . . . . 6  |-  ( ph  ->  ( ( x  e. 
ran  ( RR  _D  F )  /\  x  e.  ( -oo (,) 0
) )  ->  ( F  Isom  <  ,  <  ( ( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) ) )
13454, 133syl5bi 217 . . . . 5  |-  ( ph  ->  ( x  e.  ( ran  ( RR  _D  F )  i^i  ( -oo (,) 0 ) )  ->  ( F  Isom  <  ,  <  ( ( A [,] B ) ,  ran  F )  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) ) )
135134exlimdv 1689 . . . 4  |-  ( ph  ->  ( E. x  x  e.  ( ran  ( RR  _D  F )  i^i  ( -oo (,) 0
) )  ->  ( F  Isom  <  ,  <  ( ( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) ) )
13653, 135syl5bi 217 . . 3  |-  ( ph  ->  ( ( ran  ( RR  _D  F )  i^i  ( -oo (,) 0
) )  =/=  (/)  ->  ( F  Isom  <  ,  <  ( ( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) ) )
137136imp 429 . 2  |-  ( (
ph  /\  ( ran  ( RR  _D  F
)  i^i  ( -oo (,) 0 ) )  =/=  (/) )  ->  ( F 
Isom  <  ,  <  (
( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) )
13852, 137pm2.61dane 2679 1  |-  ( ph  ->  ( F  Isom  <  ,  <  ( ( A [,] B ) ,  ran  F )  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 958    = wceq 1362   E.wex 1589    e. wcel 1755    =/= wne 2596   A.wral 2705   E.wrex 2706    u. cun 3314    i^i cin 3315    C_ wss 3316   (/)c0 3625   class class class wbr 4280   `'ccnv 4826   dom cdm 4827   ran crn 4828    |` cres 4829    Fn wfn 5401   -->wf 5402   ` cfv 5406    Isom wiso 5407  (class class class)co 6080   CCcc 9267   RRcr 9268   0cc0 9269   -oocmnf 9403   RR*cxr 9404    < clt 9405    <_ cle 9406   RR+crp 10978   (,)cioo 11287   [,]cicc 11290   TopOpenctopn 14342   topGenctg 14358  ℂfldccnfld 17661   Topctop 18339   intcnt 18462   -cn->ccncf 20293    _D cdv 21179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346  ax-pre-sup 9347  ax-addf 9348  ax-mulf 9349
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-cda 8325  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-div 9981  df-nn 10310  df-2 10367  df-3 10368  df-4 10369  df-5 10370  df-6 10371  df-7 10372  df-8 10373  df-9 10374  df-10 10375  df-n0 10567  df-z 10634  df-dec 10743  df-uz 10849  df-q 10941  df-rp 10979  df-xneg 11076  df-xadd 11077  df-xmul 11078  df-ioo 11291  df-ico 11293  df-icc 11294  df-fz 11424  df-fzo 11532  df-seq 11790  df-exp 11849  df-hash 12087  df-cj 12571  df-re 12572  df-im 12573  df-sqr 12707  df-abs 12708  df-struct 14158  df-ndx 14159  df-slot 14160  df-base 14161  df-sets 14162  df-ress 14163  df-plusg 14233  df-mulr 14234  df-starv 14235  df-sca 14236  df-vsca 14237  df-ip 14238  df-tset 14239  df-ple 14240  df-ds 14242  df-unif 14243  df-hom 14244  df-cco 14245  df-rest 14343  df-topn 14344  df-0g 14362  df-gsum 14363  df-topgen 14364  df-pt 14365  df-prds 14368  df-xrs 14422  df-qtop 14427  df-imas 14428  df-xps 14430  df-mre 14506  df-mrc 14507  df-acs 14509  df-mnd 15397  df-submnd 15447  df-mulg 15527  df-cntz 15814  df-cmn 16258  df-psmet 17652  df-xmet 17653  df-met 17654  df-bl 17655  df-mopn 17656  df-fbas 17657  df-fg 17658  df-cnfld 17662  df-top 18344  df-bases 18346  df-topon 18347  df-topsp 18348  df-cld 18464  df-ntr 18465  df-cls 18466  df-nei 18543  df-lp 18581  df-perf 18582  df-cn 18672  df-cnp 18673  df-haus 18760  df-cmp 18831  df-tx 18976  df-hmeo 19169  df-fil 19260  df-fm 19352  df-flim 19353  df-flf 19354  df-xms 19736  df-ms 19737  df-tms 19738  df-cncf 20295  df-limc 21182  df-dv 21183
This theorem is referenced by:  dvne0f1  21325  dvcnvrelem1  21330
  Copyright terms: Public domain W3C validator