MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmulf Structured version   Unicode version

Theorem dvmulf 22431
Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvaddf.f  |-  ( ph  ->  F : X --> CC )
dvaddf.g  |-  ( ph  ->  G : X --> CC )
dvaddf.df  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
dvaddf.dg  |-  ( ph  ->  dom  ( S  _D  G )  =  X )
Assertion
Ref Expression
dvmulf  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) )  =  ( ( ( S  _D  F )  oF  x.  G )  oF  +  ( ( S  _D  G )  oF  x.  F
) ) )

Proof of Theorem dvmulf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvaddf.f . . . . 5  |-  ( ph  ->  F : X --> CC )
21adantr 463 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  F : X --> CC )
3 dvaddf.df . . . . . 6  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
4 dvbsss 22391 . . . . . 6  |-  dom  ( S  _D  F )  C_  S
53, 4syl6eqssr 3468 . . . . 5  |-  ( ph  ->  X  C_  S )
65adantr 463 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  X  C_  S )
7 dvaddf.g . . . . 5  |-  ( ph  ->  G : X --> CC )
87adantr 463 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  G : X --> CC )
9 dvaddf.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
109adantr 463 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  S  e.  { RR ,  CC } )
113eleq2d 2452 . . . . 5  |-  ( ph  ->  ( x  e.  dom  ( S  _D  F
)  <->  x  e.  X
) )
1211biimpar 483 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  F ) )
13 dvaddf.dg . . . . . 6  |-  ( ph  ->  dom  ( S  _D  G )  =  X )
1413eleq2d 2452 . . . . 5  |-  ( ph  ->  ( x  e.  dom  ( S  _D  G
)  <->  x  e.  X
) )
1514biimpar 483 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  G ) )
162, 6, 8, 6, 10, 12, 15dvmul 22429 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  ( F  oF  x.  G
) ) `  x
)  =  ( ( ( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  +  ( ( ( S  _D  G ) `
 x )  x.  ( F `  x
) ) ) )
1716mpteq2dva 4453 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( ( S  _D  ( F  oF  x.  G ) ) `  x ) )  =  ( x  e.  X  |->  ( ( ( ( S  _D  F ) `
 x )  x.  ( G `  x
) )  +  ( ( ( S  _D  G ) `  x
)  x.  ( F `
 x ) ) ) ) )
18 dvfg 22395 . . . . 5  |-  ( S  e.  { RR ,  CC }  ->  ( S  _D  ( F  oF  x.  G ) ) : dom  ( S  _D  ( F  oF  x.  G )
) --> CC )
199, 18syl 16 . . . 4  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) ) : dom  ( S  _D  ( F  oF  x.  G
) ) --> CC )
20 recnprss 22393 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
219, 20syl 16 . . . . . . 7  |-  ( ph  ->  S  C_  CC )
22 mulcl 9487 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
2322adantl 464 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
249, 5ssexd 4512 . . . . . . . 8  |-  ( ph  ->  X  e.  _V )
25 inidm 3621 . . . . . . . 8  |-  ( X  i^i  X )  =  X
2623, 1, 7, 24, 24, 25off 6453 . . . . . . 7  |-  ( ph  ->  ( F  oF  x.  G ) : X --> CC )
2721, 26, 5dvbss 22390 . . . . . 6  |-  ( ph  ->  dom  ( S  _D  ( F  oF  x.  G ) )  C_  X )
2821adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  S  C_  CC )
29 fvex 5784 . . . . . . . . . . 11  |-  ( ( S  _D  F ) `
 x )  e. 
_V
3029a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  F
) `  x )  e.  _V )
31 fvex 5784 . . . . . . . . . . 11  |-  ( ( S  _D  G ) `
 x )  e. 
_V
3231a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  G
) `  x )  e.  _V )
33 dvfg 22395 . . . . . . . . . . . . . 14  |-  ( S  e.  { RR ,  CC }  ->  ( S  _D  F ) : dom  ( S  _D  F
) --> CC )
349, 33syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
3534adantr 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
36 ffun 5641 . . . . . . . . . . . 12  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC 
->  Fun  ( S  _D  F ) )
37 funfvbrb 5902 . . . . . . . . . . . 12  |-  ( Fun  ( S  _D  F
)  ->  ( x  e.  dom  ( S  _D  F )  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
3835, 36, 373syl 20 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  dom  ( S  _D  F )  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
3912, 38mpbid 210 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  F
) ( ( S  _D  F ) `  x ) )
40 dvfg 22395 . . . . . . . . . . . . . 14  |-  ( S  e.  { RR ,  CC }  ->  ( S  _D  G ) : dom  ( S  _D  G
) --> CC )
419, 40syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S  _D  G
) : dom  ( S  _D  G ) --> CC )
4241adantr 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  ( S  _D  G ) : dom  ( S  _D  G ) --> CC )
43 ffun 5641 . . . . . . . . . . . 12  |-  ( ( S  _D  G ) : dom  ( S  _D  G ) --> CC 
->  Fun  ( S  _D  G ) )
44 funfvbrb 5902 . . . . . . . . . . . 12  |-  ( Fun  ( S  _D  G
)  ->  ( x  e.  dom  ( S  _D  G )  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
4542, 43, 443syl 20 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  dom  ( S  _D  G )  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
4615, 45mpbid 210 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  G
) ( ( S  _D  G ) `  x ) )
47 eqid 2382 . . . . . . . . . 10  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
482, 6, 8, 6, 28, 30, 32, 39, 46, 47dvmulbr 22427 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  ( F  oF  x.  G
) ) ( ( ( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  +  ( ( ( S  _D  G ) `
 x )  x.  ( F `  x
) ) ) )
49 reldv 22359 . . . . . . . . . 10  |-  Rel  ( S  _D  ( F  oF  x.  G )
)
5049releldmi 5152 . . . . . . . . 9  |-  ( x ( S  _D  ( F  oF  x.  G
) ) ( ( ( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  +  ( ( ( S  _D  G ) `
 x )  x.  ( F `  x
) ) )  ->  x  e.  dom  ( S  _D  ( F  oF  x.  G )
) )
5148, 50syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  ( F  oF  x.  G ) ) )
5251ex 432 . . . . . . 7  |-  ( ph  ->  ( x  e.  X  ->  x  e.  dom  ( S  _D  ( F  oF  x.  G )
) ) )
5352ssrdv 3423 . . . . . 6  |-  ( ph  ->  X  C_  dom  ( S  _D  ( F  oF  x.  G )
) )
5427, 53eqssd 3434 . . . . 5  |-  ( ph  ->  dom  ( S  _D  ( F  oF  x.  G ) )  =  X )
5554feq2d 5626 . . . 4  |-  ( ph  ->  ( ( S  _D  ( F  oF  x.  G ) ) : dom  ( S  _D  ( F  oF  x.  G ) ) --> CC  <->  ( S  _D  ( F  oF  x.  G
) ) : X --> CC ) )
5619, 55mpbid 210 . . 3  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) ) : X --> CC )
5756feqmptd 5827 . 2  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) )  =  ( x  e.  X  |->  ( ( S  _D  ( F  oF  x.  G
) ) `  x
) ) )
58 ovex 6224 . . . 4  |-  ( ( ( S  _D  F
) `  x )  x.  ( G `  x
) )  e.  _V
5958a1i 11 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  e.  _V )
60 ovex 6224 . . . 4  |-  ( ( ( S  _D  G
) `  x )  x.  ( F `  x
) )  e.  _V
6160a1i 11 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  G ) `  x
)  x.  ( F `
 x ) )  e.  _V )
62 fvex 5784 . . . . 5  |-  ( G `
 x )  e. 
_V
6362a1i 11 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  ( G `  x )  e.  _V )
643feq2d 5626 . . . . . 6  |-  ( ph  ->  ( ( S  _D  F ) : dom  ( S  _D  F
) --> CC  <->  ( S  _D  F ) : X --> CC ) )
6534, 64mpbid 210 . . . . 5  |-  ( ph  ->  ( S  _D  F
) : X --> CC )
6665feqmptd 5827 . . . 4  |-  ( ph  ->  ( S  _D  F
)  =  ( x  e.  X  |->  ( ( S  _D  F ) `
 x ) ) )
677feqmptd 5827 . . . 4  |-  ( ph  ->  G  =  ( x  e.  X  |->  ( G `
 x ) ) )
6824, 30, 63, 66, 67offval2 6455 . . 3  |-  ( ph  ->  ( ( S  _D  F )  oF  x.  G )  =  ( x  e.  X  |->  ( ( ( S  _D  F ) `  x )  x.  ( G `  x )
) ) )
69 fvex 5784 . . . . 5  |-  ( F `
 x )  e. 
_V
7069a1i 11 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  _V )
7113feq2d 5626 . . . . . 6  |-  ( ph  ->  ( ( S  _D  G ) : dom  ( S  _D  G
) --> CC  <->  ( S  _D  G ) : X --> CC ) )
7241, 71mpbid 210 . . . . 5  |-  ( ph  ->  ( S  _D  G
) : X --> CC )
7372feqmptd 5827 . . . 4  |-  ( ph  ->  ( S  _D  G
)  =  ( x  e.  X  |->  ( ( S  _D  G ) `
 x ) ) )
741feqmptd 5827 . . . 4  |-  ( ph  ->  F  =  ( x  e.  X  |->  ( F `
 x ) ) )
7524, 32, 70, 73, 74offval2 6455 . . 3  |-  ( ph  ->  ( ( S  _D  G )  oF  x.  F )  =  ( x  e.  X  |->  ( ( ( S  _D  G ) `  x )  x.  ( F `  x )
) ) )
7624, 59, 61, 68, 75offval2 6455 . 2  |-  ( ph  ->  ( ( ( S  _D  F )  oF  x.  G )  oF  +  ( ( S  _D  G
)  oF  x.  F ) )  =  ( x  e.  X  |->  ( ( ( ( S  _D  F ) `
 x )  x.  ( G `  x
) )  +  ( ( ( S  _D  G ) `  x
)  x.  ( F `
 x ) ) ) ) )
7717, 57, 763eqtr4d 2433 1  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) )  =  ( ( ( S  _D  F )  oF  x.  G )  oF  +  ( ( S  _D  G )  oF  x.  F
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1826   _Vcvv 3034    C_ wss 3389   {cpr 3946   class class class wbr 4367    |-> cmpt 4425   dom cdm 4913   Fun wfun 5490   -->wf 5492   ` cfv 5496  (class class class)co 6196    oFcof 6437   CCcc 9401   RRcr 9402    + caddc 9406    x. cmul 9408   TopOpenctopn 14829  ℂfldccnfld 18533    _D cdv 22352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-inf2 7972  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481  ax-addf 9482  ax-mulf 9483
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-of 6439  df-om 6600  df-1st 6699  df-2nd 6700  df-supp 6818  df-recs 6960  df-rdg 6994  df-1o 7048  df-2o 7049  df-oadd 7052  df-er 7229  df-map 7340  df-pm 7341  df-ixp 7389  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-fsupp 7745  df-fi 7786  df-sup 7816  df-oi 7850  df-card 8233  df-cda 8461  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-7 10516  df-8 10517  df-9 10518  df-10 10519  df-n0 10713  df-z 10782  df-dec 10896  df-uz 11002  df-q 11102  df-rp 11140  df-xneg 11239  df-xadd 11240  df-xmul 11241  df-icc 11457  df-fz 11594  df-fzo 11718  df-seq 12011  df-exp 12070  df-hash 12308  df-cj 12934  df-re 12935  df-im 12936  df-sqrt 13070  df-abs 13071  df-struct 14636  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-ress 14641  df-plusg 14715  df-mulr 14716  df-starv 14717  df-sca 14718  df-vsca 14719  df-ip 14720  df-tset 14721  df-ple 14722  df-ds 14724  df-unif 14725  df-hom 14726  df-cco 14727  df-rest 14830  df-topn 14831  df-0g 14849  df-gsum 14850  df-topgen 14851  df-pt 14852  df-prds 14855  df-xrs 14909  df-qtop 14914  df-imas 14915  df-xps 14917  df-mre 14993  df-mrc 14994  df-acs 14996  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-submnd 16084  df-mulg 16177  df-cntz 16472  df-cmn 16917  df-psmet 18524  df-xmet 18525  df-met 18526  df-bl 18527  df-mopn 18528  df-fbas 18529  df-fg 18530  df-cnfld 18534  df-top 19484  df-bases 19486  df-topon 19487  df-topsp 19488  df-cld 19605  df-ntr 19606  df-cls 19607  df-nei 19685  df-lp 19723  df-perf 19724  df-cn 19814  df-cnp 19815  df-haus 19902  df-tx 20148  df-hmeo 20341  df-fil 20432  df-fm 20524  df-flim 20525  df-flf 20526  df-xms 20908  df-ms 20909  df-tms 20910  df-cncf 21467  df-limc 22355  df-dv 22356
This theorem is referenced by:  dvcmulf  22433  dvexp  22441  dvmptmul  22449  expgrowth  31408  binomcxplemnotnn0  31429  dvmulcncf  31888
  Copyright terms: Public domain W3C validator