MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmulbr Unicode version

Theorem dvmulbr 19778
Description: The product rule for derivatives at a point. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvadd.f  |-  ( ph  ->  F : X --> CC )
dvadd.x  |-  ( ph  ->  X  C_  S )
dvadd.g  |-  ( ph  ->  G : Y --> CC )
dvadd.y  |-  ( ph  ->  Y  C_  S )
dvaddbr.s  |-  ( ph  ->  S  C_  CC )
dvadd.k  |-  ( ph  ->  K  e.  V )
dvadd.l  |-  ( ph  ->  L  e.  V )
dvadd.bf  |-  ( ph  ->  C ( S  _D  F ) K )
dvadd.bg  |-  ( ph  ->  C ( S  _D  G ) L )
dvadd.j  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
dvmulbr  |-  ( ph  ->  C ( S  _D  ( F  o F  x.  G ) ) ( ( K  x.  ( G `  C )
)  +  ( L  x.  ( F `  C ) ) ) )

Proof of Theorem dvmulbr
Dummy variables  y 
z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.bf . . . . . 6  |-  ( ph  ->  C ( S  _D  F ) K )
2 eqid 2404 . . . . . . 7  |-  ( Jt  S )  =  ( Jt  S )
3 dvadd.j . . . . . . 7  |-  J  =  ( TopOpen ` fld )
4 eqid 2404 . . . . . . 7  |-  ( z  e.  ( X  \  { C } )  |->  ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) ) )  =  ( z  e.  ( X  \  { C } )  |->  ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) ) )
5 dvaddbr.s . . . . . . 7  |-  ( ph  ->  S  C_  CC )
6 dvadd.f . . . . . . 7  |-  ( ph  ->  F : X --> CC )
7 dvadd.x . . . . . . 7  |-  ( ph  ->  X  C_  S )
82, 3, 4, 5, 6, 7eldv 19738 . . . . . 6  |-  ( ph  ->  ( C ( S  _D  F ) K  <-> 
( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( z  e.  ( X  \  { C } )  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) ) ) )
91, 8mpbid 202 . . . . 5  |-  ( ph  ->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( z  e.  ( X  \  { C } )  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) ) )
109simpld 446 . . . 4  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  S ) ) `  X
) )
11 dvadd.bg . . . . . 6  |-  ( ph  ->  C ( S  _D  G ) L )
12 eqid 2404 . . . . . . 7  |-  ( z  e.  ( Y  \  { C } )  |->  ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( z  e.  ( Y  \  { C } )  |->  ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )
13 dvadd.g . . . . . . 7  |-  ( ph  ->  G : Y --> CC )
14 dvadd.y . . . . . . 7  |-  ( ph  ->  Y  C_  S )
152, 3, 12, 5, 13, 14eldv 19738 . . . . . 6  |-  ( ph  ->  ( C ( S  _D  G ) L  <-> 
( C  e.  ( ( int `  ( Jt  S ) ) `  Y )  /\  L  e.  ( ( z  e.  ( Y  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) ) ) )
1611, 15mpbid 202 . . . . 5  |-  ( ph  ->  ( C  e.  ( ( int `  ( Jt  S ) ) `  Y )  /\  L  e.  ( ( z  e.  ( Y  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) ) )
1716simpld 446 . . . 4  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  S ) ) `  Y
) )
18 elin 3490 . . . 4  |-  ( C  e.  ( ( ( int `  ( Jt  S ) ) `  X
)  i^i  ( ( int `  ( Jt  S ) ) `  Y ) )  <->  ( C  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  C  e.  ( ( int `  ( Jt  S ) ) `  Y ) ) )
1910, 17, 18sylanbrc 646 . . 3  |-  ( ph  ->  C  e.  ( ( ( int `  ( Jt  S ) ) `  X )  i^i  (
( int `  ( Jt  S ) ) `  Y ) ) )
203cnfldtopon 18770 . . . . . 6  |-  J  e.  (TopOn `  CC )
21 resttopon 17179 . . . . . 6  |-  ( ( J  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Jt  S )  e.  (TopOn `  S ) )
2220, 5, 21sylancr 645 . . . . 5  |-  ( ph  ->  ( Jt  S )  e.  (TopOn `  S ) )
23 topontop 16946 . . . . 5  |-  ( ( Jt  S )  e.  (TopOn `  S )  ->  ( Jt  S )  e.  Top )
2422, 23syl 16 . . . 4  |-  ( ph  ->  ( Jt  S )  e.  Top )
25 toponuni 16947 . . . . . 6  |-  ( ( Jt  S )  e.  (TopOn `  S )  ->  S  =  U. ( Jt  S ) )
2622, 25syl 16 . . . . 5  |-  ( ph  ->  S  =  U. ( Jt  S ) )
277, 26sseqtrd 3344 . . . 4  |-  ( ph  ->  X  C_  U. ( Jt  S ) )
2814, 26sseqtrd 3344 . . . 4  |-  ( ph  ->  Y  C_  U. ( Jt  S ) )
29 eqid 2404 . . . . 5  |-  U. ( Jt  S )  =  U. ( Jt  S )
3029ntrin 17080 . . . 4  |-  ( ( ( Jt  S )  e.  Top  /\  X  C_  U. ( Jt  S )  /\  Y  C_ 
U. ( Jt  S ) )  ->  ( ( int `  ( Jt  S ) ) `  ( X  i^i  Y ) )  =  ( ( ( int `  ( Jt  S ) ) `  X
)  i^i  ( ( int `  ( Jt  S ) ) `  Y ) ) )
3124, 27, 28, 30syl3anc 1184 . . 3  |-  ( ph  ->  ( ( int `  ( Jt  S ) ) `  ( X  i^i  Y ) )  =  ( ( ( int `  ( Jt  S ) ) `  X )  i^i  (
( int `  ( Jt  S ) ) `  Y ) ) )
3219, 31eleqtrrd 2481 . 2  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  S ) ) `  ( X  i^i  Y ) ) )
336adantr 452 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  ->  F : X --> CC )
34 inss1 3521 . . . . . . . . 9  |-  ( X  i^i  Y )  C_  X
35 eldifi 3429 . . . . . . . . . 10  |-  ( z  e.  ( ( X  i^i  Y )  \  { C } )  -> 
z  e.  ( X  i^i  Y ) )
3635adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
z  e.  ( X  i^i  Y ) )
3734, 36sseldi 3306 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
z  e.  X )
3833, 37ffvelrnd 5830 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( F `  z
)  e.  CC )
395, 6, 7dvbss 19741 . . . . . . . . . 10  |-  ( ph  ->  dom  ( S  _D  F )  C_  X
)
40 reldv 19710 . . . . . . . . . . 11  |-  Rel  ( S  _D  F )
41 releldm 5061 . . . . . . . . . . 11  |-  ( ( Rel  ( S  _D  F )  /\  C
( S  _D  F
) K )  ->  C  e.  dom  ( S  _D  F ) )
4240, 1, 41sylancr 645 . . . . . . . . . 10  |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )
4339, 42sseldd 3309 . . . . . . . . 9  |-  ( ph  ->  C  e.  X )
446, 43ffvelrnd 5830 . . . . . . . 8  |-  ( ph  ->  ( F `  C
)  e.  CC )
4544adantr 452 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( F `  C
)  e.  CC )
4638, 45subcld 9367 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( F `  z )  -  ( F `  C )
)  e.  CC )
477, 5sstrd 3318 . . . . . . . . 9  |-  ( ph  ->  X  C_  CC )
4847adantr 452 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  ->  X  C_  CC )
4948, 37sseldd 3309 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
z  e.  CC )
5047, 43sseldd 3309 . . . . . . . 8  |-  ( ph  ->  C  e.  CC )
5150adantr 452 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  ->  C  e.  CC )
5249, 51subcld 9367 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( z  -  C
)  e.  CC )
53 eldifsni 3888 . . . . . . . 8  |-  ( z  e.  ( ( X  i^i  Y )  \  { C } )  -> 
z  =/=  C )
5453adantl 453 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
z  =/=  C )
5549, 51, 54subne0d 9376 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( z  -  C
)  =/=  0 )
5646, 52, 55divcld 9746 . . . . 5  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) )  e.  CC )
5713adantr 452 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  ->  G : Y --> CC )
58 inss2 3522 . . . . . . 7  |-  ( X  i^i  Y )  C_  Y
5958, 36sseldi 3306 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
z  e.  Y )
6057, 59ffvelrnd 5830 . . . . 5  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( G `  z
)  e.  CC )
6156, 60mulcld 9064 . . . 4  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( ( ( F `  z )  -  ( F `  C ) )  / 
( z  -  C
) )  x.  ( G `  z )
)  e.  CC )
62 ssdif 3442 . . . . . . . 8  |-  ( ( X  i^i  Y ) 
C_  Y  ->  (
( X  i^i  Y
)  \  { C } )  C_  ( Y  \  { C }
) )
6358, 62mp1i 12 . . . . . . 7  |-  ( ph  ->  ( ( X  i^i  Y )  \  { C } )  C_  ( Y  \  { C }
) )
6463sselda 3308 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
z  e.  ( Y 
\  { C }
) )
6514, 5sstrd 3318 . . . . . . 7  |-  ( ph  ->  Y  C_  CC )
665, 13, 14dvbss 19741 . . . . . . . 8  |-  ( ph  ->  dom  ( S  _D  G )  C_  Y
)
67 reldv 19710 . . . . . . . . 9  |-  Rel  ( S  _D  G )
68 releldm 5061 . . . . . . . . 9  |-  ( ( Rel  ( S  _D  G )  /\  C
( S  _D  G
) L )  ->  C  e.  dom  ( S  _D  G ) )
6967, 11, 68sylancr 645 . . . . . . . 8  |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )
7066, 69sseldd 3309 . . . . . . 7  |-  ( ph  ->  C  e.  Y )
7113, 65, 70dvlem 19736 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) )  e.  CC )
7264, 71syldan 457 . . . . 5  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) )  e.  CC )
7372, 45mulcld 9064 . . . 4  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) )  x.  ( F `  C )
)  e.  CC )
74 ssid 3327 . . . . 5  |-  CC  C_  CC
7574a1i 11 . . . 4  |-  ( ph  ->  CC  C_  CC )
76 txtopon 17576 . . . . . . 7  |-  ( ( J  e.  (TopOn `  CC )  /\  J  e.  (TopOn `  CC )
)  ->  ( J  tX  J )  e.  (TopOn `  ( CC  X.  CC ) ) )
7720, 20, 76mp2an 654 . . . . . 6  |-  ( J 
tX  J )  e.  (TopOn `  ( CC  X.  CC ) )
7877toponunii 16952 . . . . . . 7  |-  ( CC 
X.  CC )  = 
U. ( J  tX  J )
7978restid 13616 . . . . . 6  |-  ( ( J  tX  J )  e.  (TopOn `  ( CC  X.  CC ) )  ->  ( ( J 
tX  J )t  ( CC 
X.  CC ) )  =  ( J  tX  J ) )
8077, 79ax-mp 8 . . . . 5  |-  ( ( J  tX  J )t  ( CC  X.  CC ) )  =  ( J 
tX  J )
8180eqcomi 2408 . . . 4  |-  ( J 
tX  J )  =  ( ( J  tX  J )t  ( CC  X.  CC ) )
829simprd 450 . . . . . 6  |-  ( ph  ->  K  e.  ( ( z  e.  ( X 
\  { C }
)  |->  ( ( ( F `  z )  -  ( F `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) )
836, 47, 43dvlem 19736 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( X  \  { C } ) )  -> 
( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) )  e.  CC )
8483, 4fmptd 5852 . . . . . . . 8  |-  ( ph  ->  ( z  e.  ( X  \  { C } )  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) ) : ( X  \  { C } ) --> CC )
85 ssdif 3442 . . . . . . . . 9  |-  ( ( X  i^i  Y ) 
C_  X  ->  (
( X  i^i  Y
)  \  { C } )  C_  ( X  \  { C }
) )
8634, 85mp1i 12 . . . . . . . 8  |-  ( ph  ->  ( ( X  i^i  Y )  \  { C } )  C_  ( X  \  { C }
) )
8747ssdifssd 3445 . . . . . . . 8  |-  ( ph  ->  ( X  \  { C } )  C_  CC )
88 eqid 2404 . . . . . . . 8  |-  ( Jt  ( ( X  \  { C } )  u.  { C } ) )  =  ( Jt  ( ( X 
\  { C }
)  u.  { C } ) )
8934, 7syl5ss 3319 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( X  i^i  Y
)  C_  S )
9089, 26sseqtrd 3344 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X  i^i  Y
)  C_  U. ( Jt  S ) )
91 difssd 3435 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( U. ( Jt  S )  \  X ) 
C_  U. ( Jt  S ) )
9290, 91unssd 3483 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  X
) )  C_  U. ( Jt  S ) )
93 ssun1 3470 . . . . . . . . . . . . . 14  |-  ( X  i^i  Y )  C_  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  X
) )
9493a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X  i^i  Y
)  C_  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  X ) ) )
9529ntrss 17074 . . . . . . . . . . . . 13  |-  ( ( ( Jt  S )  e.  Top  /\  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  X
) )  C_  U. ( Jt  S )  /\  ( X  i^i  Y )  C_  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  X
) ) )  -> 
( ( int `  ( Jt  S ) ) `  ( X  i^i  Y ) )  C_  ( ( int `  ( Jt  S ) ) `  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  X
) ) ) )
9624, 92, 94, 95syl3anc 1184 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( int `  ( Jt  S ) ) `  ( X  i^i  Y ) )  C_  ( ( int `  ( Jt  S ) ) `  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  X
) ) ) )
9796, 32sseldd 3309 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  S ) ) `  (
( X  i^i  Y
)  u.  ( U. ( Jt  S )  \  X
) ) ) )
98 elin 3490 . . . . . . . . . . 11  |-  ( C  e.  ( ( ( int `  ( Jt  S ) ) `  (
( X  i^i  Y
)  u.  ( U. ( Jt  S )  \  X
) ) )  i^i 
X )  <->  ( C  e.  ( ( int `  ( Jt  S ) ) `  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  X
) ) )  /\  C  e.  X )
)
9997, 43, 98sylanbrc 646 . . . . . . . . . 10  |-  ( ph  ->  C  e.  ( ( ( int `  ( Jt  S ) ) `  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  X
) ) )  i^i 
X ) )
10034a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( X  i^i  Y
)  C_  X )
101 eqid 2404 . . . . . . . . . . . . 13  |-  ( ( Jt  S )t  X )  =  ( ( Jt  S )t  X )
10229, 101restntr 17200 . . . . . . . . . . . 12  |-  ( ( ( Jt  S )  e.  Top  /\  X  C_  U. ( Jt  S )  /\  ( X  i^i  Y )  C_  X )  ->  (
( int `  (
( Jt  S )t  X ) ) `  ( X  i^i  Y ) )  =  ( ( ( int `  ( Jt  S ) ) `  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  X
) ) )  i^i 
X ) )
10324, 27, 100, 102syl3anc 1184 . . . . . . . . . . 11  |-  ( ph  ->  ( ( int `  (
( Jt  S )t  X ) ) `  ( X  i^i  Y ) )  =  ( ( ( int `  ( Jt  S ) ) `  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  X
) ) )  i^i 
X ) )
1043cnfldtop 18771 . . . . . . . . . . . . . . 15  |-  J  e. 
Top
105104a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  J  e.  Top )
106 cnex 9027 . . . . . . . . . . . . . . 15  |-  CC  e.  _V
107 ssexg 4309 . . . . . . . . . . . . . . 15  |-  ( ( S  C_  CC  /\  CC  e.  _V )  ->  S  e.  _V )
1085, 106, 107sylancl 644 . . . . . . . . . . . . . 14  |-  ( ph  ->  S  e.  _V )
109 restabs 17183 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  X  C_  S  /\  S  e.  _V )  ->  (
( Jt  S )t  X )  =  ( Jt  X ) )
110105, 7, 108, 109syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Jt  S )t  X )  =  ( Jt  X ) )
111110fveq2d 5691 . . . . . . . . . . . 12  |-  ( ph  ->  ( int `  (
( Jt  S )t  X ) )  =  ( int `  ( Jt  X ) ) )
112111fveq1d 5689 . . . . . . . . . . 11  |-  ( ph  ->  ( ( int `  (
( Jt  S )t  X ) ) `  ( X  i^i  Y ) )  =  ( ( int `  ( Jt  X ) ) `  ( X  i^i  Y ) ) )
113103, 112eqtr3d 2438 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( int `  ( Jt  S ) ) `  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  X
) ) )  i^i 
X )  =  ( ( int `  ( Jt  X ) ) `  ( X  i^i  Y ) ) )
11499, 113eleqtrd 2480 . . . . . . . . 9  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  X ) ) `  ( X  i^i  Y ) ) )
115 undif1 3663 . . . . . . . . . . . . 13  |-  ( ( X  \  { C } )  u.  { C } )  =  ( X  u.  { C } )
11643snssd 3903 . . . . . . . . . . . . . 14  |-  ( ph  ->  { C }  C_  X )
117 ssequn2 3480 . . . . . . . . . . . . . 14  |-  ( { C }  C_  X  <->  ( X  u.  { C } )  =  X )
118116, 117sylib 189 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X  u.  { C } )  =  X )
119115, 118syl5eq 2448 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( X  \  { C } )  u. 
{ C } )  =  X )
120119oveq2d 6056 . . . . . . . . . . 11  |-  ( ph  ->  ( Jt  ( ( X 
\  { C }
)  u.  { C } ) )  =  ( Jt  X ) )
121120fveq2d 5691 . . . . . . . . . 10  |-  ( ph  ->  ( int `  ( Jt  ( ( X  \  { C } )  u. 
{ C } ) ) )  =  ( int `  ( Jt  X ) ) )
122 undif1 3663 . . . . . . . . . . 11  |-  ( ( ( X  i^i  Y
)  \  { C } )  u.  { C } )  =  ( ( X  i^i  Y
)  u.  { C } )
123 elin 3490 . . . . . . . . . . . . . 14  |-  ( C  e.  ( X  i^i  Y )  <->  ( C  e.  X  /\  C  e.  Y ) )
12443, 70, 123sylanbrc 646 . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  ( X  i^i  Y ) )
125124snssd 3903 . . . . . . . . . . . 12  |-  ( ph  ->  { C }  C_  ( X  i^i  Y ) )
126 ssequn2 3480 . . . . . . . . . . . 12  |-  ( { C }  C_  ( X  i^i  Y )  <->  ( ( X  i^i  Y )  u. 
{ C } )  =  ( X  i^i  Y ) )
127125, 126sylib 189 . . . . . . . . . . 11  |-  ( ph  ->  ( ( X  i^i  Y )  u.  { C } )  =  ( X  i^i  Y ) )
128122, 127syl5eq 2448 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( X  i^i  Y )  \  { C } )  u. 
{ C } )  =  ( X  i^i  Y ) )
129121, 128fveq12d 5693 . . . . . . . . 9  |-  ( ph  ->  ( ( int `  ( Jt  ( ( X  \  { C } )  u. 
{ C } ) ) ) `  (
( ( X  i^i  Y )  \  { C } )  u.  { C } ) )  =  ( ( int `  ( Jt  X ) ) `  ( X  i^i  Y ) ) )
130114, 129eleqtrrd 2481 . . . . . . . 8  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  ( ( X  \  { C } )  u.  { C } ) ) ) `
 ( ( ( X  i^i  Y ) 
\  { C }
)  u.  { C } ) ) )
13184, 86, 87, 3, 88, 130limcres 19726 . . . . . . 7  |-  ( ph  ->  ( ( ( z  e.  ( X  \  { C } )  |->  ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) ) )  |`  ( ( X  i^i  Y )  \  { C } ) ) lim
CC  C )  =  ( ( z  e.  ( X  \  { C } )  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
132 resmpt 5150 . . . . . . . . 9  |-  ( ( ( X  i^i  Y
)  \  { C } )  C_  ( X  \  { C }
)  ->  ( (
z  e.  ( X 
\  { C }
)  |->  ( ( ( F `  z )  -  ( F `  C ) )  / 
( z  -  C
) ) )  |`  ( ( X  i^i  Y )  \  { C } ) )  =  ( z  e.  ( ( X  i^i  Y
)  \  { C } )  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) ) )
13386, 132syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( z  e.  ( X  \  { C } )  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) )  |`  ( ( X  i^i  Y )  \  { C } ) )  =  ( z  e.  ( ( X  i^i  Y
)  \  { C } )  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) ) )
134133oveq1d 6055 . . . . . . 7  |-  ( ph  ->  ( ( ( z  e.  ( X  \  { C } )  |->  ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) ) )  |`  ( ( X  i^i  Y )  \  { C } ) ) lim
CC  C )  =  ( ( z  e.  ( ( X  i^i  Y )  \  { C } )  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
135131, 134eqtr3d 2438 . . . . . 6  |-  ( ph  ->  ( ( z  e.  ( X  \  { C } )  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C )  =  ( ( z  e.  ( ( X  i^i  Y )  \  { C } )  |->  ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
13682, 135eleqtrd 2480 . . . . 5  |-  ( ph  ->  K  e.  ( ( z  e.  ( ( X  i^i  Y ) 
\  { C }
)  |->  ( ( ( F `  z )  -  ( F `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) )
137 eqid 2404 . . . . . . . . . 10  |-  ( Jt  Y )  =  ( Jt  Y )
138137, 3dvcnp2 19759 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  G : Y --> CC  /\  Y  C_  S )  /\  C  e.  dom  ( S  _D  G ) )  ->  G  e.  ( ( ( Jt  Y )  CnP  J ) `  C ) )
1395, 13, 14, 69, 138syl31anc 1187 . . . . . . . 8  |-  ( ph  ->  G  e.  ( ( ( Jt  Y )  CnP  J
) `  C )
)
1403, 137cnplimc 19727 . . . . . . . . 9  |-  ( ( Y  C_  CC  /\  C  e.  Y )  ->  ( G  e.  ( (
( Jt  Y )  CnP  J
) `  C )  <->  ( G : Y --> CC  /\  ( G `  C )  e.  ( G lim CC  C ) ) ) )
14165, 70, 140syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( G  e.  ( ( ( Jt  Y )  CnP  J ) `  C )  <->  ( G : Y --> CC  /\  ( G `  C )  e.  ( G lim CC  C
) ) ) )
142139, 141mpbid 202 . . . . . . 7  |-  ( ph  ->  ( G : Y --> CC  /\  ( G `  C )  e.  ( G lim CC  C ) ) )
143142simprd 450 . . . . . 6  |-  ( ph  ->  ( G `  C
)  e.  ( G lim
CC  C ) )
144 difss 3434 . . . . . . . . . 10  |-  ( ( X  i^i  Y ) 
\  { C }
)  C_  ( X  i^i  Y )
145144, 58sstri 3317 . . . . . . . . 9  |-  ( ( X  i^i  Y ) 
\  { C }
)  C_  Y
146145a1i 11 . . . . . . . 8  |-  ( ph  ->  ( ( X  i^i  Y )  \  { C } )  C_  Y
)
147 eqid 2404 . . . . . . . 8  |-  ( Jt  ( Y  u.  { C } ) )  =  ( Jt  ( Y  u.  { C } ) )
148 difssd 3435 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( U. ( Jt  S )  \  Y ) 
C_  U. ( Jt  S ) )
14990, 148unssd 3483 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  Y
) )  C_  U. ( Jt  S ) )
150 ssun1 3470 . . . . . . . . . . . . . 14  |-  ( X  i^i  Y )  C_  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  Y
) )
151150a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X  i^i  Y
)  C_  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  Y ) ) )
15229ntrss 17074 . . . . . . . . . . . . 13  |-  ( ( ( Jt  S )  e.  Top  /\  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  Y
) )  C_  U. ( Jt  S )  /\  ( X  i^i  Y )  C_  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  Y
) ) )  -> 
( ( int `  ( Jt  S ) ) `  ( X  i^i  Y ) )  C_  ( ( int `  ( Jt  S ) ) `  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  Y
) ) ) )
15324, 149, 151, 152syl3anc 1184 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( int `  ( Jt  S ) ) `  ( X  i^i  Y ) )  C_  ( ( int `  ( Jt  S ) ) `  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  Y
) ) ) )
154153, 32sseldd 3309 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  S ) ) `  (
( X  i^i  Y
)  u.  ( U. ( Jt  S )  \  Y
) ) ) )
155 elin 3490 . . . . . . . . . . 11  |-  ( C  e.  ( ( ( int `  ( Jt  S ) ) `  (
( X  i^i  Y
)  u.  ( U. ( Jt  S )  \  Y
) ) )  i^i 
Y )  <->  ( C  e.  ( ( int `  ( Jt  S ) ) `  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  Y
) ) )  /\  C  e.  Y )
)
156154, 70, 155sylanbrc 646 . . . . . . . . . 10  |-  ( ph  ->  C  e.  ( ( ( int `  ( Jt  S ) ) `  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  Y
) ) )  i^i 
Y ) )
15758a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( X  i^i  Y
)  C_  Y )
158 eqid 2404 . . . . . . . . . . . . 13  |-  ( ( Jt  S )t  Y )  =  ( ( Jt  S )t  Y )
15929, 158restntr 17200 . . . . . . . . . . . 12  |-  ( ( ( Jt  S )  e.  Top  /\  Y  C_  U. ( Jt  S )  /\  ( X  i^i  Y )  C_  Y )  ->  (
( int `  (
( Jt  S )t  Y ) ) `  ( X  i^i  Y ) )  =  ( ( ( int `  ( Jt  S ) ) `  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  Y
) ) )  i^i 
Y ) )
16024, 28, 157, 159syl3anc 1184 . . . . . . . . . . 11  |-  ( ph  ->  ( ( int `  (
( Jt  S )t  Y ) ) `  ( X  i^i  Y ) )  =  ( ( ( int `  ( Jt  S ) ) `  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  Y
) ) )  i^i 
Y ) )
161 restabs 17183 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  Y  C_  S  /\  S  e.  _V )  ->  (
( Jt  S )t  Y )  =  ( Jt  Y ) )
162105, 14, 108, 161syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Jt  S )t  Y )  =  ( Jt  Y ) )
163162fveq2d 5691 . . . . . . . . . . . 12  |-  ( ph  ->  ( int `  (
( Jt  S )t  Y ) )  =  ( int `  ( Jt  Y ) ) )
164163fveq1d 5689 . . . . . . . . . . 11  |-  ( ph  ->  ( ( int `  (
( Jt  S )t  Y ) ) `  ( X  i^i  Y ) )  =  ( ( int `  ( Jt  Y ) ) `  ( X  i^i  Y ) ) )
165160, 164eqtr3d 2438 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( int `  ( Jt  S ) ) `  ( ( X  i^i  Y )  u.  ( U. ( Jt  S )  \  Y
) ) )  i^i 
Y )  =  ( ( int `  ( Jt  Y ) ) `  ( X  i^i  Y ) ) )
166156, 165eleqtrd 2480 . . . . . . . . 9  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  Y ) ) `  ( X  i^i  Y ) ) )
16770snssd 3903 . . . . . . . . . . . . 13  |-  ( ph  ->  { C }  C_  Y )
168 ssequn2 3480 . . . . . . . . . . . . 13  |-  ( { C }  C_  Y  <->  ( Y  u.  { C } )  =  Y )
169167, 168sylib 189 . . . . . . . . . . . 12  |-  ( ph  ->  ( Y  u.  { C } )  =  Y )
170169oveq2d 6056 . . . . . . . . . . 11  |-  ( ph  ->  ( Jt  ( Y  u.  { C } ) )  =  ( Jt  Y ) )
171170fveq2d 5691 . . . . . . . . . 10  |-  ( ph  ->  ( int `  ( Jt  ( Y  u.  { C } ) ) )  =  ( int `  ( Jt  Y ) ) )
172171, 128fveq12d 5693 . . . . . . . . 9  |-  ( ph  ->  ( ( int `  ( Jt  ( Y  u.  { C } ) ) ) `
 ( ( ( X  i^i  Y ) 
\  { C }
)  u.  { C } ) )  =  ( ( int `  ( Jt  Y ) ) `  ( X  i^i  Y ) ) )
173166, 172eleqtrrd 2481 . . . . . . . 8  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  ( Y  u.  { C } ) ) ) `
 ( ( ( X  i^i  Y ) 
\  { C }
)  u.  { C } ) ) )
17413, 146, 65, 3, 147, 173limcres 19726 . . . . . . 7  |-  ( ph  ->  ( ( G  |`  ( ( X  i^i  Y )  \  { C } ) ) lim CC  C )  =  ( G lim CC  C ) )
17513, 146feqresmpt 5739 . . . . . . . 8  |-  ( ph  ->  ( G  |`  (
( X  i^i  Y
)  \  { C } ) )  =  ( z  e.  ( ( X  i^i  Y
)  \  { C } )  |->  ( G `
 z ) ) )
176175oveq1d 6055 . . . . . . 7  |-  ( ph  ->  ( ( G  |`  ( ( X  i^i  Y )  \  { C } ) ) lim CC  C )  =  ( ( z  e.  ( ( X  i^i  Y
)  \  { C } )  |->  ( G `
 z ) ) lim
CC  C ) )
177174, 176eqtr3d 2438 . . . . . 6  |-  ( ph  ->  ( G lim CC  C
)  =  ( ( z  e.  ( ( X  i^i  Y ) 
\  { C }
)  |->  ( G `  z ) ) lim CC  C ) )
178143, 177eleqtrd 2480 . . . . 5  |-  ( ph  ->  ( G `  C
)  e.  ( ( z  e.  ( ( X  i^i  Y ) 
\  { C }
)  |->  ( G `  z ) ) lim CC  C ) )
1793mulcn 18850 . . . . . 6  |-  x.  e.  ( ( J  tX  J )  Cn  J
)
1805, 6, 7dvcl 19739 . . . . . . . 8  |-  ( (
ph  /\  C ( S  _D  F ) K )  ->  K  e.  CC )
1811, 180mpdan 650 . . . . . . 7  |-  ( ph  ->  K  e.  CC )
18213, 70ffvelrnd 5830 . . . . . . 7  |-  ( ph  ->  ( G `  C
)  e.  CC )
183 opelxpi 4869 . . . . . . 7  |-  ( ( K  e.  CC  /\  ( G `  C )  e.  CC )  ->  <. K ,  ( G `
 C ) >.  e.  ( CC  X.  CC ) )
184181, 182, 183syl2anc 643 . . . . . 6  |-  ( ph  -> 
<. K ,  ( G `
 C ) >.  e.  ( CC  X.  CC ) )
18578cncnpi 17296 . . . . . 6  |-  ( (  x.  e.  ( ( J  tX  J )  Cn  J )  /\  <. K ,  ( G `  C ) >.  e.  ( CC  X.  CC ) )  ->  x.  e.  ( ( ( J 
tX  J )  CnP 
J ) `  <. K ,  ( G `  C ) >. )
)
186179, 184, 185sylancr 645 . . . . 5  |-  ( ph  ->  x.  e.  ( ( ( J  tX  J
)  CnP  J ) `  <. K ,  ( G `  C )
>. ) )
18756, 60, 75, 75, 3, 81, 136, 178, 186limccnp2 19732 . . . 4  |-  ( ph  ->  ( K  x.  ( G `  C )
)  e.  ( ( z  e.  ( ( X  i^i  Y ) 
\  { C }
)  |->  ( ( ( ( F `  z
)  -  ( F `
 C ) )  /  ( z  -  C ) )  x.  ( G `  z
) ) ) lim CC  C ) )
18816simprd 450 . . . . . 6  |-  ( ph  ->  L  e.  ( ( z  e.  ( Y 
\  { C }
)  |->  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) )
18971, 12fmptd 5852 . . . . . . . 8  |-  ( ph  ->  ( z  e.  ( Y  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) : ( Y  \  { C } ) --> CC )
19065ssdifssd 3445 . . . . . . . 8  |-  ( ph  ->  ( Y  \  { C } )  C_  CC )
191 eqid 2404 . . . . . . . 8  |-  ( Jt  ( ( Y  \  { C } )  u.  { C } ) )  =  ( Jt  ( ( Y 
\  { C }
)  u.  { C } ) )
192 undif1 3663 . . . . . . . . . . . . 13  |-  ( ( Y  \  { C } )  u.  { C } )  =  ( Y  u.  { C } )
193192, 169syl5eq 2448 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( Y  \  { C } )  u. 
{ C } )  =  Y )
194193oveq2d 6056 . . . . . . . . . . 11  |-  ( ph  ->  ( Jt  ( ( Y 
\  { C }
)  u.  { C } ) )  =  ( Jt  Y ) )
195194fveq2d 5691 . . . . . . . . . 10  |-  ( ph  ->  ( int `  ( Jt  ( ( Y  \  { C } )  u. 
{ C } ) ) )  =  ( int `  ( Jt  Y ) ) )
196195, 128fveq12d 5693 . . . . . . . . 9  |-  ( ph  ->  ( ( int `  ( Jt  ( ( Y  \  { C } )  u. 
{ C } ) ) ) `  (
( ( X  i^i  Y )  \  { C } )  u.  { C } ) )  =  ( ( int `  ( Jt  Y ) ) `  ( X  i^i  Y ) ) )
197166, 196eleqtrrd 2481 . . . . . . . 8  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  ( ( Y  \  { C } )  u.  { C } ) ) ) `
 ( ( ( X  i^i  Y ) 
\  { C }
)  u.  { C } ) ) )
198189, 63, 190, 3, 191, 197limcres 19726 . . . . . . 7  |-  ( ph  ->  ( ( ( z  e.  ( Y  \  { C } )  |->  ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  |`  ( ( X  i^i  Y )  \  { C } ) ) lim
CC  C )  =  ( ( z  e.  ( Y  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
199 resmpt 5150 . . . . . . . . 9  |-  ( ( ( X  i^i  Y
)  \  { C } )  C_  ( Y  \  { C }
)  ->  ( (
z  e.  ( Y 
\  { C }
)  |->  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) )  |`  ( ( X  i^i  Y )  \  { C } ) )  =  ( z  e.  ( ( X  i^i  Y
)  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) )
20063, 199syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( z  e.  ( Y  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )  |`  ( ( X  i^i  Y )  \  { C } ) )  =  ( z  e.  ( ( X  i^i  Y
)  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) )
201200oveq1d 6055 . . . . . . 7  |-  ( ph  ->  ( ( ( z  e.  ( Y  \  { C } )  |->  ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  |`  ( ( X  i^i  Y )  \  { C } ) ) lim
CC  C )  =  ( ( z  e.  ( ( X  i^i  Y )  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
202198, 201eqtr3d 2438 . . . . . 6  |-  ( ph  ->  ( ( z  e.  ( Y  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C )  =  ( ( z  e.  ( ( X  i^i  Y )  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) )
203188, 202eleqtrd 2480 . . . . 5  |-  ( ph  ->  L  e.  ( ( z  e.  ( ( X  i^i  Y ) 
\  { C }
)  |->  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) )
20489, 5sstrd 3318 . . . . . . . 8  |-  ( ph  ->  ( X  i^i  Y
)  C_  CC )
205 cncfmptc 18894 . . . . . . . 8  |-  ( ( ( F `  C
)  e.  CC  /\  ( X  i^i  Y ) 
C_  CC  /\  CC  C_  CC )  ->  ( z  e.  ( X  i^i  Y )  |->  ( F `  C ) )  e.  ( ( X  i^i  Y ) -cn-> CC ) )
20644, 204, 75, 205syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( z  e.  ( X  i^i  Y ) 
|->  ( F `  C
) )  e.  ( ( X  i^i  Y
) -cn-> CC ) )
207 eqidd 2405 . . . . . . 7  |-  ( z  =  C  ->  ( F `  C )  =  ( F `  C ) )
208206, 124, 207cnmptlimc 19730 . . . . . 6  |-  ( ph  ->  ( F `  C
)  e.  ( ( z  e.  ( X  i^i  Y )  |->  ( F `  C ) ) lim CC  C ) )
20944adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( X  i^i  Y ) )  ->  ( F `  C )  e.  CC )
210 eqid 2404 . . . . . . . . 9  |-  ( z  e.  ( X  i^i  Y )  |->  ( F `  C ) )  =  ( z  e.  ( X  i^i  Y ) 
|->  ( F `  C
) )
211209, 210fmptd 5852 . . . . . . . 8  |-  ( ph  ->  ( z  e.  ( X  i^i  Y ) 
|->  ( F `  C
) ) : ( X  i^i  Y ) --> CC )
212211limcdif 19716 . . . . . . 7  |-  ( ph  ->  ( ( z  e.  ( X  i^i  Y
)  |->  ( F `  C ) ) lim CC  C )  =  ( ( ( z  e.  ( X  i^i  Y
)  |->  ( F `  C ) )  |`  ( ( X  i^i  Y )  \  { C } ) ) lim CC  C ) )
213 resmpt 5150 . . . . . . . . 9  |-  ( ( ( X  i^i  Y
)  \  { C } )  C_  ( X  i^i  Y )  -> 
( ( z  e.  ( X  i^i  Y
)  |->  ( F `  C ) )  |`  ( ( X  i^i  Y )  \  { C } ) )  =  ( z  e.  ( ( X  i^i  Y
)  \  { C } )  |->  ( F `
 C ) ) )
214144, 213mp1i 12 . . . . . . . 8  |-  ( ph  ->  ( ( z  e.  ( X  i^i  Y
)  |->  ( F `  C ) )  |`  ( ( X  i^i  Y )  \  { C } ) )  =  ( z  e.  ( ( X  i^i  Y
)  \  { C } )  |->  ( F `
 C ) ) )
215214oveq1d 6055 . . . . . . 7  |-  ( ph  ->  ( ( ( z  e.  ( X  i^i  Y )  |->  ( F `  C ) )  |`  ( ( X  i^i  Y )  \  { C } ) ) lim CC  C )  =  ( ( z  e.  ( ( X  i^i  Y
)  \  { C } )  |->  ( F `
 C ) ) lim
CC  C ) )
216212, 215eqtrd 2436 . . . . . 6  |-  ( ph  ->  ( ( z  e.  ( X  i^i  Y
)  |->  ( F `  C ) ) lim CC  C )  =  ( ( z  e.  ( ( X  i^i  Y
)  \  { C } )  |->  ( F `
 C ) ) lim
CC  C ) )
217208, 216eleqtrd 2480 . . . . 5  |-  ( ph  ->  ( F `  C
)  e.  ( ( z  e.  ( ( X  i^i  Y ) 
\  { C }
)  |->  ( F `  C ) ) lim CC  C ) )
2185, 13, 14dvcl 19739 . . . . . . . 8  |-  ( (
ph  /\  C ( S  _D  G ) L )  ->  L  e.  CC )
21911, 218mpdan 650 . . . . . . 7  |-  ( ph  ->  L  e.  CC )
220 opelxpi 4869 . . . . . . 7  |-  ( ( L  e.  CC  /\  ( F `  C )  e.  CC )  ->  <. L ,  ( F `
 C ) >.  e.  ( CC  X.  CC ) )
221219, 44, 220syl2anc 643 . . . . . 6  |-  ( ph  -> 
<. L ,  ( F `
 C ) >.  e.  ( CC  X.  CC ) )
22278cncnpi 17296 . . . . . 6  |-  ( (  x.  e.  ( ( J  tX  J )  Cn  J )  /\  <. L ,  ( F `  C ) >.  e.  ( CC  X.  CC ) )  ->  x.  e.  ( ( ( J 
tX  J )  CnP 
J ) `  <. L ,  ( F `  C ) >. )
)
223179, 221, 222sylancr 645 . . . . 5  |-  ( ph  ->  x.  e.  ( ( ( J  tX  J
)  CnP  J ) `  <. L ,  ( F `  C )
>. ) )
22472, 45, 75, 75, 3, 81, 203, 217, 223limccnp2 19732 . . . 4  |-  ( ph  ->  ( L  x.  ( F `  C )
)  e.  ( ( z  e.  ( ( X  i^i  Y ) 
\  { C }
)  |->  ( ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) )  x.  ( F `  C
) ) ) lim CC  C ) )
2253addcn 18848 . . . . 5  |-  +  e.  ( ( J  tX  J )  Cn  J
)
226181, 182mulcld 9064 . . . . . 6  |-  ( ph  ->  ( K  x.  ( G `  C )
)  e.  CC )
227219, 44mulcld 9064 . . . . . 6  |-  ( ph  ->  ( L  x.  ( F `  C )
)  e.  CC )
228 opelxpi 4869 . . . . . 6  |-  ( ( ( K  x.  ( G `  C )
)  e.  CC  /\  ( L  x.  ( F `  C )
)  e.  CC )  ->  <. ( K  x.  ( G `  C ) ) ,  ( L  x.  ( F `  C ) ) >.  e.  ( CC  X.  CC ) )
229226, 227, 228syl2anc 643 . . . . 5  |-  ( ph  -> 
<. ( K  x.  ( G `  C )
) ,  ( L  x.  ( F `  C ) ) >.  e.  ( CC  X.  CC ) )
23078cncnpi 17296 . . . . 5  |-  ( (  +  e.  ( ( J  tX  J )  Cn  J )  /\  <.
( K  x.  ( G `  C )
) ,  ( L  x.  ( F `  C ) ) >.  e.  ( CC  X.  CC ) )  ->  +  e.  ( ( ( J 
tX  J )  CnP 
J ) `  <. ( K  x.  ( G `
 C ) ) ,  ( L  x.  ( F `  C ) ) >. ) )
231225, 229, 230sylancr 645 . . . 4  |-  ( ph  ->  +  e.  ( ( ( J  tX  J
)  CnP  J ) `  <. ( K  x.  ( G `  C ) ) ,  ( L  x.  ( F `  C ) ) >.
) )
23261, 73, 75, 75, 3, 81, 187, 224, 231limccnp2 19732 . . 3  |-  ( ph  ->  ( ( K  x.  ( G `  C ) )  +  ( L  x.  ( F `  C ) ) )  e.  ( ( z  e.  ( ( X  i^i  Y )  \  { C } )  |->  ( ( ( ( ( F `  z )  -  ( F `  C ) )  / 
( z  -  C
) )  x.  ( G `  z )
)  +  ( ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) )  x.  ( F `  C ) ) ) ) lim CC  C ) )
23343adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  ->  C  e.  X )
23433, 233ffvelrnd 5830 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( F `  C
)  e.  CC )
23538, 234subcld 9367 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( F `  z )  -  ( F `  C )
)  e.  CC )
236235, 60mulcld 9064 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( ( F `
 z )  -  ( F `  C ) )  x.  ( G `
 z ) )  e.  CC )
23770adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  ->  C  e.  Y )
23857, 237ffvelrnd 5830 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( G `  C
)  e.  CC )
23960, 238subcld 9367 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( G `  z )  -  ( G `  C )
)  e.  CC )
240239, 234mulcld 9064 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  x.  ( F `
 C ) )  e.  CC )
24148, 233sseldd 3309 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  ->  C  e.  CC )
24249, 241subcld 9367 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( z  -  C
)  e.  CC )
243236, 240, 242, 55divdird 9784 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( ( ( ( F `  z
)  -  ( F `
 C ) )  x.  ( G `  z ) )  +  ( ( ( G `
 z )  -  ( G `  C ) )  x.  ( F `
 C ) ) )  /  ( z  -  C ) )  =  ( ( ( ( ( F `  z )  -  ( F `  C )
)  x.  ( G `
 z ) )  /  ( z  -  C ) )  +  ( ( ( ( G `  z )  -  ( G `  C ) )  x.  ( F `  C
) )  /  (
z  -  C ) ) ) )
24438, 60mulcld 9064 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( F `  z )  x.  ( G `  z )
)  e.  CC )
245234, 60mulcld 9064 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( F `  C )  x.  ( G `  z )
)  e.  CC )
246234, 238mulcld 9064 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( F `  C )  x.  ( G `  C )
)  e.  CC )
247244, 245, 246npncand 9391 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( ( ( F `  z )  x.  ( G `  z ) )  -  ( ( F `  C )  x.  ( G `  z )
) )  +  ( ( ( F `  C )  x.  ( G `  z )
)  -  ( ( F `  C )  x.  ( G `  C ) ) ) )  =  ( ( ( F `  z
)  x.  ( G `
 z ) )  -  ( ( F `
 C )  x.  ( G `  C
) ) ) )
24838, 234, 60subdird 9446 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( ( F `
 z )  -  ( F `  C ) )  x.  ( G `
 z ) )  =  ( ( ( F `  z )  x.  ( G `  z ) )  -  ( ( F `  C )  x.  ( G `  z )
) ) )
249239, 234mulcomd 9065 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  x.  ( F `
 C ) )  =  ( ( F `
 C )  x.  ( ( G `  z )  -  ( G `  C )
) ) )
250234, 60, 238subdid 9445 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( F `  C )  x.  (
( G `  z
)  -  ( G `
 C ) ) )  =  ( ( ( F `  C
)  x.  ( G `
 z ) )  -  ( ( F `
 C )  x.  ( G `  C
) ) ) )
251249, 250eqtrd 2436 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  x.  ( F `
 C ) )  =  ( ( ( F `  C )  x.  ( G `  z ) )  -  ( ( F `  C )  x.  ( G `  C )
) ) )
252248, 251oveq12d 6058 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( ( ( F `  z )  -  ( F `  C ) )  x.  ( G `  z
) )  +  ( ( ( G `  z )  -  ( G `  C )
)  x.  ( F `
 C ) ) )  =  ( ( ( ( F `  z )  x.  ( G `  z )
)  -  ( ( F `  C )  x.  ( G `  z ) ) )  +  ( ( ( F `  C )  x.  ( G `  z ) )  -  ( ( F `  C )  x.  ( G `  C )
) ) ) )
253 ffn 5550 . . . . . . . . . . . . 13  |-  ( F : X --> CC  ->  F  Fn  X )
2546, 253syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  F  Fn  X )
255254adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  ->  F  Fn  X )
256 ffn 5550 . . . . . . . . . . . . 13  |-  ( G : Y --> CC  ->  G  Fn  Y )
25713, 256syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  G  Fn  Y )
258257adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  ->  G  Fn  Y )
259 ssexg 4309 . . . . . . . . . . . . 13  |-  ( ( X  C_  CC  /\  CC  e.  _V )  ->  X  e.  _V )
26047, 106, 259sylancl 644 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  _V )
261260adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  ->  X  e.  _V )
262 ssexg 4309 . . . . . . . . . . . . 13  |-  ( ( Y  C_  CC  /\  CC  e.  _V )  ->  Y  e.  _V )
26365, 106, 262sylancl 644 . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  _V )
264263adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  ->  Y  e.  _V )
265 eqid 2404 . . . . . . . . . . 11  |-  ( X  i^i  Y )  =  ( X  i^i  Y
)
266 eqidd 2405 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  /\  z  e.  X )  ->  ( F `  z
)  =  ( F `
 z ) )
267 eqidd 2405 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  /\  z  e.  Y )  ->  ( G `  z
)  =  ( G `
 z ) )
268255, 258, 261, 264, 265, 266, 267ofval 6273 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  /\  z  e.  ( X  i^i  Y ) )  -> 
( ( F  o F  x.  G ) `  z )  =  ( ( F `  z
)  x.  ( G `
 z ) ) )
26936, 268mpdan 650 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( F  o F  x.  G ) `  z )  =  ( ( F `  z
)  x.  ( G `
 z ) ) )
270124adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  ->  C  e.  ( X  i^i  Y ) )
271 eqidd 2405 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  /\  C  e.  X )  ->  ( F `  C
)  =  ( F `
 C ) )
272 eqidd 2405 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  /\  C  e.  Y )  ->  ( G `  C
)  =  ( G `
 C ) )
273255, 258, 261, 264, 265, 271, 272ofval 6273 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  /\  C  e.  ( X  i^i  Y ) )  -> 
( ( F  o F  x.  G ) `  C )  =  ( ( F `  C
)  x.  ( G `
 C ) ) )
274270, 273mpdan 650 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( F  o F  x.  G ) `  C )  =  ( ( F `  C
)  x.  ( G `
 C ) ) )
275269, 274oveq12d 6058 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( ( F  o F  x.  G
) `  z )  -  ( ( F  o F  x.  G
) `  C )
)  =  ( ( ( F `  z
)  x.  ( G `
 z ) )  -  ( ( F `
 C )  x.  ( G `  C
) ) ) )
276247, 252, 2753eqtr4d 2446 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( ( ( F `  z )  -  ( F `  C ) )  x.  ( G `  z
) )  +  ( ( ( G `  z )  -  ( G `  C )
)  x.  ( F `
 C ) ) )  =  ( ( ( F  o F  x.  G ) `  z )  -  (
( F  o F  x.  G ) `  C ) ) )
277276oveq1d 6055 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( ( ( ( F `  z
)  -  ( F `
 C ) )  x.  ( G `  z ) )  +  ( ( ( G `
 z )  -  ( G `  C ) )  x.  ( F `
 C ) ) )  /  ( z  -  C ) )  =  ( ( ( ( F  o F  x.  G ) `  z )  -  (
( F  o F  x.  G ) `  C ) )  / 
( z  -  C
) ) )
278235, 60, 242, 55div23d 9783 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( ( ( F `  z )  -  ( F `  C ) )  x.  ( G `  z
) )  /  (
z  -  C ) )  =  ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  x.  ( G `  z ) ) )
279239, 234, 242, 55div23d 9783 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( ( ( G `  z )  -  ( G `  C ) )  x.  ( F `  C
) )  /  (
z  -  C ) )  =  ( ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) )  x.  ( F `  C ) ) )
280278, 279oveq12d 6058 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( ( ( ( F `  z
)  -  ( F `
 C ) )  x.  ( G `  z ) )  / 
( z  -  C
) )  +  ( ( ( ( G `
 z )  -  ( G `  C ) )  x.  ( F `
 C ) )  /  ( z  -  C ) ) )  =  ( ( ( ( ( F `  z )  -  ( F `  C )
)  /  ( z  -  C ) )  x.  ( G `  z ) )  +  ( ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) )  x.  ( F `  C )
) ) )
281243, 277, 2803eqtr3d 2444 . . . . 5  |-  ( (
ph  /\  z  e.  ( ( X  i^i  Y )  \  { C } ) )  -> 
( ( ( ( F  o F  x.  G ) `  z
)  -  ( ( F  o F  x.  G ) `  C
) )  /  (
z  -  C ) )  =  ( ( ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) )  x.  ( G `  z ) )  +  ( ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) )  x.  ( F `  C )
) ) )
282281mpteq2dva 4255 . . . 4  |-  ( ph  ->  ( z  e.  ( ( X  i^i  Y
)  \  { C } )  |->  ( ( ( ( F  o F  x.  G ) `  z )  -  (
( F  o F  x.  G ) `  C ) )  / 
( z  -  C
) ) )  =  ( z  e.  ( ( X  i^i  Y
)  \  { C } )  |->  ( ( ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) )  x.  ( G `  z ) )  +  ( ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) )  x.  ( F `  C )
) ) ) )
283282oveq1d 6055 . . 3  |-  ( ph  ->  ( ( z  e.  ( ( X  i^i  Y )  \  { C } )  |->  ( ( ( ( F  o F  x.  G ) `  z )  -  (
( F  o F  x.  G ) `  C ) )  / 
( z  -  C
) ) ) lim CC  C )  =  ( ( z  e.  ( ( X  i^i  Y
)  \  { C } )  |->  ( ( ( ( ( F `
 z )  -  ( F `  C ) )  /  ( z  -  C ) )  x.  ( G `  z ) )  +  ( ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) )  x.  ( F `  C )
) ) ) lim CC  C ) )
284232, 283eleqtrrd 2481 . 2  |-  ( ph  ->  ( ( K  x.  ( G `  C ) )  +  ( L  x.  ( F `  C ) ) )  e.  ( ( z  e.  ( ( X  i^i  Y )  \  { C } )  |->  ( ( ( ( F  o F  x.  G
) `  z )  -  ( ( F  o F  x.  G
) `  C )
)  /  ( z  -  C ) ) ) lim CC  C ) )
285 eqid 2404 . . 3  |-  ( z  e.  ( ( X  i^i  Y )  \  { C } )  |->  ( ( ( ( F  o F  x.  G
) `  z )  -  ( ( F  o F  x.  G
) `  C )
)  /  ( z  -  C ) ) )  =  ( z  e.  ( ( X  i^i  Y )  \  { C } )  |->  ( ( ( ( F  o F  x.  G
) `  z )  -  ( ( F  o F  x.  G
) `  C )
)  /  ( z  -  C ) ) )
286 mulcl 9030 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
287286adantl 453 . . . 4  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
288287, 6, 13, 260, 263, 265off 6279 . . 3  |-  ( ph  ->  ( F  o F  x.  G ) : ( X  i^i  Y
) --> CC )
2892, 3, 285, 5, 288, 89eldv 19738 . 2  |-  ( ph  ->  ( C ( S  _D  ( F  o F  x.  G )
) ( ( K  x.  ( G `  C ) )  +  ( L  x.  ( F `  C )
) )  <->  ( C  e.  ( ( int `  ( Jt  S ) ) `  ( X  i^i  Y ) )  /\  ( ( K  x.  ( G `
 C ) )  +  ( L  x.  ( F `  C ) ) )  e.  ( ( z  e.  ( ( X  i^i  Y
)  \  { C } )  |->  ( ( ( ( F  o F  x.  G ) `  z )  -  (
( F  o F  x.  G ) `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) ) ) )
29032, 284, 289mpbir2and 889 1  |-  ( ph  ->  C ( S  _D  ( F  o F  x.  G ) ) ( ( K  x.  ( G `  C )
)  +  ( L  x.  ( F `  C ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   _Vcvv 2916    \ cdif 3277    u. cun 3278    i^i cin 3279    C_ wss 3280   {csn 3774   <.cop 3777   U.cuni 3975   class class class wbr 4172    e. cmpt 4226    X. cxp 4835   dom cdm 4837    |` cres 4839   Rel wrel 4842    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040    o Fcof 6262   CCcc 8944    + caddc 8949    x. cmul 8951    - cmin 9247    / cdiv 9633   ↾t crest 13603   TopOpenctopn 13604  ℂfldccnfld 16658   Topctop 16913  TopOnctopon 16914   intcnt 17036    Cn ccn 17242    CnP ccnp 17243    tX ctx 17545   -cn->ccncf 18859   lim CC climc 19702    _D cdv 19703
This theorem is referenced by:  dvmul  19780  dvmulf  19782  dvef  19817
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-icc 10879  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-cn 17245  df-cnp 17246  df-tx 17547  df-hmeo 17740  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707
  Copyright terms: Public domain W3C validator