MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptntr Structured version   Unicode version

Theorem dvmptntr 21286
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptntr.s  |-  ( ph  ->  S  C_  CC )
dvmptntr.x  |-  ( ph  ->  X  C_  S )
dvmptntr.a  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
dvmptntr.j  |-  J  =  ( Kt  S )
dvmptntr.k  |-  K  =  ( TopOpen ` fld )
dvmptntr.i  |-  ( ph  ->  ( ( int `  J
) `  X )  =  Y )
Assertion
Ref Expression
dvmptntr  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) )  =  ( S  _D  ( x  e.  Y  |->  A ) ) )
Distinct variable groups:    ph, x    x, X    x, Y
Allowed substitution hints:    A( x)    S( x)    J( x)    K( x)

Proof of Theorem dvmptntr
StepHypRef Expression
1 dvmptntr.j . . . . . . . . 9  |-  J  =  ( Kt  S )
2 dvmptntr.k . . . . . . . . . . 11  |-  K  =  ( TopOpen ` fld )
32cnfldtopon 20203 . . . . . . . . . 10  |-  K  e.  (TopOn `  CC )
4 dvmptntr.s . . . . . . . . . 10  |-  ( ph  ->  S  C_  CC )
5 resttopon 18606 . . . . . . . . . 10  |-  ( ( K  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Kt  S )  e.  (TopOn `  S ) )
63, 4, 5sylancr 656 . . . . . . . . 9  |-  ( ph  ->  ( Kt  S )  e.  (TopOn `  S ) )
71, 6syl5eqel 2517 . . . . . . . 8  |-  ( ph  ->  J  e.  (TopOn `  S ) )
8 topontop 18372 . . . . . . . 8  |-  ( J  e.  (TopOn `  S
)  ->  J  e.  Top )
97, 8syl 16 . . . . . . 7  |-  ( ph  ->  J  e.  Top )
10 dvmptntr.x . . . . . . . 8  |-  ( ph  ->  X  C_  S )
11 toponuni 18373 . . . . . . . . 9  |-  ( J  e.  (TopOn `  S
)  ->  S  =  U. J )
127, 11syl 16 . . . . . . . 8  |-  ( ph  ->  S  =  U. J
)
1310, 12sseqtrd 3380 . . . . . . 7  |-  ( ph  ->  X  C_  U. J )
14 eqid 2433 . . . . . . . 8  |-  U. J  =  U. J
1514ntridm 18513 . . . . . . 7  |-  ( ( J  e.  Top  /\  X  C_  U. J )  ->  ( ( int `  J ) `  (
( int `  J
) `  X )
)  =  ( ( int `  J ) `
 X ) )
169, 13, 15syl2anc 654 . . . . . 6  |-  ( ph  ->  ( ( int `  J
) `  ( ( int `  J ) `  X ) )  =  ( ( int `  J
) `  X )
)
17 dvmptntr.i . . . . . . 7  |-  ( ph  ->  ( ( int `  J
) `  X )  =  Y )
1817fveq2d 5683 . . . . . 6  |-  ( ph  ->  ( ( int `  J
) `  ( ( int `  J ) `  X ) )  =  ( ( int `  J
) `  Y )
)
1916, 18eqtr3d 2467 . . . . 5  |-  ( ph  ->  ( ( int `  J
) `  X )  =  ( ( int `  J ) `  Y
) )
2019reseq2d 5097 . . . 4  |-  ( ph  ->  ( ( S  _D  ( x  e.  X  |->  A ) )  |`  ( ( int `  J
) `  X )
)  =  ( ( S  _D  ( x  e.  X  |->  A ) )  |`  ( ( int `  J ) `  Y ) ) )
21 dvmptntr.a . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
22 eqid 2433 . . . . . 6  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
2321, 22fmptd 5855 . . . . 5  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> CC )
242, 1dvres 21227 . . . . 5  |-  ( ( ( S  C_  CC  /\  ( x  e.  X  |->  A ) : X --> CC )  /\  ( X  C_  S  /\  X  C_  S ) )  -> 
( S  _D  (
( x  e.  X  |->  A )  |`  X ) )  =  ( ( S  _D  ( x  e.  X  |->  A ) )  |`  ( ( int `  J ) `  X ) ) )
254, 23, 10, 10, 24syl22anc 1212 . . . 4  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  |`  X ) )  =  ( ( S  _D  ( x  e.  X  |->  A ) )  |`  ( ( int `  J ) `  X ) ) )
2614ntrss2 18502 . . . . . . . 8  |-  ( ( J  e.  Top  /\  X  C_  U. J )  ->  ( ( int `  J ) `  X
)  C_  X )
279, 13, 26syl2anc 654 . . . . . . 7  |-  ( ph  ->  ( ( int `  J
) `  X )  C_  X )
2817, 27eqsstr3d 3379 . . . . . 6  |-  ( ph  ->  Y  C_  X )
2928, 10sstrd 3354 . . . . 5  |-  ( ph  ->  Y  C_  S )
302, 1dvres 21227 . . . . 5  |-  ( ( ( S  C_  CC  /\  ( x  e.  X  |->  A ) : X --> CC )  /\  ( X  C_  S  /\  Y  C_  S ) )  -> 
( S  _D  (
( x  e.  X  |->  A )  |`  Y ) )  =  ( ( S  _D  ( x  e.  X  |->  A ) )  |`  ( ( int `  J ) `  Y ) ) )
314, 23, 10, 29, 30syl22anc 1212 . . . 4  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  |`  Y ) )  =  ( ( S  _D  ( x  e.  X  |->  A ) )  |`  ( ( int `  J ) `  Y ) ) )
3220, 25, 313eqtr4d 2475 . . 3  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  |`  X ) )  =  ( S  _D  ( ( x  e.  X  |->  A )  |`  Y ) ) )
33 ssid 3363 . . . . 5  |-  X  C_  X
34 resmpt 5144 . . . . 5  |-  ( X 
C_  X  ->  (
( x  e.  X  |->  A )  |`  X )  =  ( x  e.  X  |->  A ) )
3533, 34mp1i 12 . . . 4  |-  ( ph  ->  ( ( x  e.  X  |->  A )  |`  X )  =  ( x  e.  X  |->  A ) )
3635oveq2d 6096 . . 3  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  |`  X ) )  =  ( S  _D  ( x  e.  X  |->  A ) ) )
3732, 36eqtr3d 2467 . 2  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  |`  Y ) )  =  ( S  _D  ( x  e.  X  |->  A ) ) )
38 resmpt 5144 . . . 4  |-  ( Y 
C_  X  ->  (
( x  e.  X  |->  A )  |`  Y )  =  ( x  e.  Y  |->  A ) )
3928, 38syl 16 . . 3  |-  ( ph  ->  ( ( x  e.  X  |->  A )  |`  Y )  =  ( x  e.  Y  |->  A ) )
4039oveq2d 6096 . 2  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  |`  Y ) )  =  ( S  _D  ( x  e.  Y  |->  A ) ) )
4137, 40eqtr3d 2467 1  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) )  =  ( S  _D  ( x  e.  Y  |->  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755    C_ wss 3316   U.cuni 4079    e. cmpt 4338    |` cres 4829   -->wf 5402   ` cfv 5406  (class class class)co 6080   CCcc 9267   ↾t crest 14341   TopOpenctopn 14342  ℂfldccnfld 17661   Topctop 18339  TopOnctopon 18340   intcnt 18462    _D cdv 21179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346  ax-pre-sup 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fi 7649  df-sup 7679  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-div 9981  df-nn 10310  df-2 10367  df-3 10368  df-4 10369  df-5 10370  df-6 10371  df-7 10372  df-8 10373  df-9 10374  df-10 10375  df-n0 10567  df-z 10634  df-dec 10743  df-uz 10849  df-q 10941  df-rp 10979  df-xneg 11076  df-xadd 11077  df-xmul 11078  df-fz 11424  df-seq 11790  df-exp 11849  df-cj 12571  df-re 12572  df-im 12573  df-sqr 12707  df-abs 12708  df-struct 14158  df-ndx 14159  df-slot 14160  df-base 14161  df-plusg 14233  df-mulr 14234  df-starv 14235  df-tset 14239  df-ple 14240  df-ds 14242  df-unif 14243  df-rest 14343  df-topn 14344  df-topgen 14364  df-psmet 17652  df-xmet 17653  df-met 17654  df-bl 17655  df-mopn 17656  df-cnfld 17662  df-top 18344  df-bases 18346  df-topon 18347  df-topsp 18348  df-cld 18464  df-ntr 18465  df-cls 18466  df-cnp 18673  df-xms 19736  df-ms 19737  df-limc 21182  df-dv 21183
This theorem is referenced by:  rolle  21303  cmvth  21304  dvlip  21306  dvlipcn  21307  dvle  21320  dvfsumabs  21336  ftc2  21357  itgparts  21360  itgsubstlem  21361  lgamgulmlem2  26863  ftc2nc  28317  areacirc  28330  itgsin0pilem1  29633
  Copyright terms: Public domain W3C validator