MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptcl Structured version   Unicode version

Theorem dvmptcl 22230
Description: Closure lemma for dvmptcmul 22235 and other related theorems. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvmptadd.a  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
dvmptadd.b  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  V )
dvmptadd.da  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )
Assertion
Ref Expression
dvmptcl  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  CC )
Distinct variable groups:    ph, x    x, S    x, V    x, X
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem dvmptcl
StepHypRef Expression
1 dvmptadd.s . . . . . 6  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 dvfg 22178 . . . . . 6  |-  ( S  e.  { RR ,  CC }  ->  ( S  _D  ( x  e.  X  |->  A ) ) : dom  ( S  _D  ( x  e.  X  |->  A ) ) --> CC )
31, 2syl 16 . . . . 5  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) ) : dom  ( S  _D  (
x  e.  X  |->  A ) ) --> CC )
4 dvmptadd.da . . . . . . . 8  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )
54dmeqd 5211 . . . . . . 7  |-  ( ph  ->  dom  ( S  _D  ( x  e.  X  |->  A ) )  =  dom  ( x  e.  X  |->  B ) )
6 dvmptadd.b . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  V )
76ralrimiva 2881 . . . . . . . 8  |-  ( ph  ->  A. x  e.  X  B  e.  V )
8 dmmptg 5510 . . . . . . . 8  |-  ( A. x  e.  X  B  e.  V  ->  dom  (
x  e.  X  |->  B )  =  X )
97, 8syl 16 . . . . . . 7  |-  ( ph  ->  dom  ( x  e.  X  |->  B )  =  X )
105, 9eqtrd 2508 . . . . . 6  |-  ( ph  ->  dom  ( S  _D  ( x  e.  X  |->  A ) )  =  X )
1110feq2d 5724 . . . . 5  |-  ( ph  ->  ( ( S  _D  ( x  e.  X  |->  A ) ) : dom  ( S  _D  ( x  e.  X  |->  A ) ) --> CC  <->  ( S  _D  ( x  e.  X  |->  A ) ) : X --> CC ) )
123, 11mpbid 210 . . . 4  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) ) : X --> CC )
134feq1d 5723 . . . 4  |-  ( ph  ->  ( ( S  _D  ( x  e.  X  |->  A ) ) : X --> CC  <->  ( x  e.  X  |->  B ) : X --> CC ) )
1412, 13mpbid 210 . . 3  |-  ( ph  ->  ( x  e.  X  |->  B ) : X --> CC )
15 eqid 2467 . . . 4  |-  ( x  e.  X  |->  B )  =  ( x  e.  X  |->  B )
1615fmpt 6053 . . 3  |-  ( A. x  e.  X  B  e.  CC  <->  ( x  e.  X  |->  B ) : X --> CC )
1714, 16sylibr 212 . 2  |-  ( ph  ->  A. x  e.  X  B  e.  CC )
1817r19.21bi 2836 1  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   {cpr 4035    |-> cmpt 4511   dom cdm 5005   -->wf 5590  (class class class)co 6295   CCcc 9502   RRcr 9503    _D cdv 22135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-map 7434  df-pm 7435  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fi 7883  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-icc 11548  df-fz 11685  df-seq 12088  df-exp 12147  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-plusg 14585  df-mulr 14586  df-starv 14587  df-tset 14591  df-ple 14592  df-ds 14594  df-unif 14595  df-rest 14695  df-topn 14696  df-topgen 14716  df-psmet 18281  df-xmet 18282  df-met 18283  df-bl 18284  df-mopn 18285  df-fbas 18286  df-fg 18287  df-cnfld 18291  df-top 19268  df-bases 19270  df-topon 19271  df-topsp 19272  df-cld 19388  df-ntr 19389  df-cls 19390  df-nei 19467  df-lp 19505  df-perf 19506  df-cnp 19597  df-haus 19684  df-fil 20215  df-fm 20307  df-flim 20308  df-flf 20309  df-xms 20691  df-ms 20692  df-limc 22138  df-dv 22139
This theorem is referenced by:  dvmptcmul  22235  dvmptdivc  22236  dvmptneg  22237  dvmptsub  22238  dvmptcj  22239  dvmptre  22240  dvmptim  22241  dvmptco  22243  dvivth  22279  ulmdvlem1  22662  pserdvlem2  22690  dvrecg  31563  dvmptdiv  31570
  Copyright terms: Public domain W3C validator