MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptc Structured version   Unicode version

Theorem dvmptc 22530
Description: Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptid.1  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvmptc.2  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
dvmptc  |-  ( ph  ->  ( S  _D  (
x  e.  S  |->  A ) )  =  ( x  e.  S  |->  0 ) )
Distinct variable groups:    x, A    ph, x    x, S

Proof of Theorem dvmptc
StepHypRef Expression
1 eqid 2454 . 2  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2 dvmptid.1 . 2  |-  ( ph  ->  S  e.  { RR ,  CC } )
31cnfldtopon 21459 . . 3  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
4 toponmax 19599 . . 3  |-  ( (
TopOpen ` fld )  e.  (TopOn `  CC )  ->  CC  e.  ( TopOpen ` fld ) )
53, 4mp1i 12 . 2  |-  ( ph  ->  CC  e.  ( TopOpen ` fld )
)
6 recnprss 22477 . . . 4  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
72, 6syl 16 . . 3  |-  ( ph  ->  S  C_  CC )
8 df-ss 3475 . . 3  |-  ( S 
C_  CC  <->  ( S  i^i  CC )  =  S )
97, 8sylib 196 . 2  |-  ( ph  ->  ( S  i^i  CC )  =  S )
10 dvmptc.2 . . 3  |-  ( ph  ->  A  e.  CC )
1110adantr 463 . 2  |-  ( (
ph  /\  x  e.  CC )  ->  A  e.  CC )
12 0cnd 9578 . 2  |-  ( (
ph  /\  x  e.  CC )  ->  0  e.  CC )
13 dvconst 22489 . . . 4  |-  ( A  e.  CC  ->  ( CC  _D  ( CC  X.  { A } ) )  =  ( CC  X.  { 0 } ) )
1410, 13syl 16 . . 3  |-  ( ph  ->  ( CC  _D  ( CC  X.  { A }
) )  =  ( CC  X.  { 0 } ) )
15 fconstmpt 5032 . . . 4  |-  ( CC 
X.  { A }
)  =  ( x  e.  CC  |->  A )
1615oveq2i 6281 . . 3  |-  ( CC 
_D  ( CC  X.  { A } ) )  =  ( CC  _D  ( x  e.  CC  |->  A ) )
17 fconstmpt 5032 . . 3  |-  ( CC 
X.  { 0 } )  =  ( x  e.  CC  |->  0 )
1814, 16, 173eqtr3g 2518 . 2  |-  ( ph  ->  ( CC  _D  (
x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  0 ) )
191, 2, 5, 9, 11, 12, 18dvmptres3 22528 1  |-  ( ph  ->  ( S  _D  (
x  e.  S  |->  A ) )  =  ( x  e.  S  |->  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823    i^i cin 3460    C_ wss 3461   {csn 4016   {cpr 4018    |-> cmpt 4497    X. cxp 4986   ` cfv 5570  (class class class)co 6270   CCcc 9479   RRcr 9480   0cc0 9481   TopOpenctopn 14914  ℂfldccnfld 18618  TopOnctopon 19565    _D cdv 22436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fi 7863  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-icc 11539  df-fz 11676  df-seq 12093  df-exp 12152  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-struct 14721  df-ndx 14722  df-slot 14723  df-base 14724  df-plusg 14800  df-mulr 14801  df-starv 14802  df-tset 14806  df-ple 14807  df-ds 14809  df-unif 14810  df-rest 14915  df-topn 14916  df-topgen 14936  df-psmet 18609  df-xmet 18610  df-met 18611  df-bl 18612  df-mopn 18613  df-fbas 18614  df-fg 18615  df-cnfld 18619  df-top 19569  df-bases 19571  df-topon 19572  df-topsp 19573  df-cld 19690  df-ntr 19691  df-cls 19692  df-nei 19769  df-lp 19807  df-perf 19808  df-cn 19898  df-cnp 19899  df-haus 19986  df-fil 20516  df-fm 20608  df-flim 20609  df-flf 20610  df-xms 20992  df-ms 20993  df-cncf 21551  df-limc 22439  df-dv 22440
This theorem is referenced by:  dvmptcmul  22536  dvmptfsum  22545  dvef  22550  rolle  22560  dvlipcn  22564  dvtaylp  22934  taylthlem2  22938  advlog  23206  advlogexp  23207  logtayl  23212  loglesqrt  23303  dvatan  23466  log2sumbnd  23930  lgamgulmlem2  28839  dvasin  30346  dvacos  30347  areacirclem1  30350  lhe4.4ex1a  31478  binomcxplemdvbinom  31502  dvsinax  31950  dvmptconst  31952  dvasinbx  31959  dvcosax  31965  itgiccshift  32021  itgperiod  32022  itgsbtaddcnst  32023  fourierdlem60  32191  fourierdlem61  32192
  Copyright terms: Public domain W3C validator