MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvloglem Structured version   Unicode version

Theorem dvloglem 22785
Description: Lemma for dvlog 22788. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypothesis
Ref Expression
logcn.d  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
Assertion
Ref Expression
dvloglem  |-  ( log " D )  e.  (
TopOpen ` fld )

Proof of Theorem dvloglem
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logf1o 22708 . . . . . 6  |-  log :
( CC  \  {
0 } ) -1-1-onto-> ran  log
2 f1ofun 5818 . . . . . 6  |-  ( log
: ( CC  \  { 0 } ) -1-1-onto-> ran 
log  ->  Fun  log )
31, 2ax-mp 5 . . . . 5  |-  Fun  log
4 logcn.d . . . . . . 7  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
54logdmss 22779 . . . . . 6  |-  D  C_  ( CC  \  { 0 } )
6 f1odm 5820 . . . . . . 7  |-  ( log
: ( CC  \  { 0 } ) -1-1-onto-> ran 
log  ->  dom  log  =  ( CC  \  { 0 } ) )
71, 6ax-mp 5 . . . . . 6  |-  dom  log  =  ( CC  \  { 0 } )
85, 7sseqtr4i 3537 . . . . 5  |-  D  C_  dom  log
9 funimass4 5918 . . . . 5  |-  ( ( Fun  log  /\  D  C_  dom  log )  ->  (
( log " D
)  C_  ( `' Im " ( -u pi (,) pi ) )  <->  A. x  e.  D  ( log `  x )  e.  ( `' Im " ( -u pi (,) pi ) ) ) )
103, 8, 9mp2an 672 . . . 4  |-  ( ( log " D ) 
C_  ( `' Im " ( -u pi (,) pi ) )  <->  A. x  e.  D  ( log `  x )  e.  ( `' Im " ( -u pi (,) pi ) ) )
114ellogdm 22776 . . . . . . 7  |-  ( x  e.  D  <->  ( x  e.  CC  /\  ( x  e.  RR  ->  x  e.  RR+ ) ) )
1211simplbi 460 . . . . . 6  |-  ( x  e.  D  ->  x  e.  CC )
134logdmn0 22777 . . . . . 6  |-  ( x  e.  D  ->  x  =/=  0 )
1412, 13logcld 22714 . . . . 5  |-  ( x  e.  D  ->  ( log `  x )  e.  CC )
1514imcld 12991 . . . . . 6  |-  ( x  e.  D  ->  (
Im `  ( log `  x ) )  e.  RR )
1612, 13logimcld 22715 . . . . . . 7  |-  ( x  e.  D  ->  ( -u pi  <  ( Im
`  ( log `  x
) )  /\  (
Im `  ( log `  x ) )  <_  pi ) )
1716simpld 459 . . . . . 6  |-  ( x  e.  D  ->  -u pi  <  ( Im `  ( log `  x ) ) )
184logdmnrp 22778 . . . . . . . . 9  |-  ( x  e.  D  ->  -.  -u x  e.  RR+ )
19 lognegb 22730 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  x  =/=  0 )  -> 
( -u x  e.  RR+  <->  (
Im `  ( log `  x ) )  =  pi ) )
2012, 13, 19syl2anc 661 . . . . . . . . . 10  |-  ( x  e.  D  ->  ( -u x  e.  RR+  <->  ( Im `  ( log `  x
) )  =  pi ) )
2120necon3bbid 2714 . . . . . . . . 9  |-  ( x  e.  D  ->  ( -.  -u x  e.  RR+  <->  (
Im `  ( log `  x ) )  =/= 
pi ) )
2218, 21mpbid 210 . . . . . . . 8  |-  ( x  e.  D  ->  (
Im `  ( log `  x ) )  =/= 
pi )
2322necomd 2738 . . . . . . 7  |-  ( x  e.  D  ->  pi  =/=  ( Im `  ( log `  x ) ) )
24 pire 22613 . . . . . . . . 9  |-  pi  e.  RR
2524a1i 11 . . . . . . . 8  |-  ( x  e.  D  ->  pi  e.  RR )
2616simprd 463 . . . . . . . 8  |-  ( x  e.  D  ->  (
Im `  ( log `  x ) )  <_  pi )
2715, 25, 26leltned 9735 . . . . . . 7  |-  ( x  e.  D  ->  (
( Im `  ( log `  x ) )  <  pi  <->  pi  =/=  ( Im `  ( log `  x ) ) ) )
2823, 27mpbird 232 . . . . . 6  |-  ( x  e.  D  ->  (
Im `  ( log `  x ) )  < 
pi )
2924renegcli 9880 . . . . . . . 8  |-  -u pi  e.  RR
3029rexri 9646 . . . . . . 7  |-  -u pi  e.  RR*
3124rexri 9646 . . . . . . 7  |-  pi  e.  RR*
32 elioo2 11570 . . . . . . 7  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR* )  ->  ( ( Im `  ( log `  x ) )  e.  ( -u pi (,) pi )  <->  ( (
Im `  ( log `  x ) )  e.  RR  /\  -u pi  <  ( Im `  ( log `  x ) )  /\  ( Im `  ( log `  x ) )  <  pi ) ) )
3330, 31, 32mp2an 672 . . . . . 6  |-  ( ( Im `  ( log `  x ) )  e.  ( -u pi (,) pi )  <->  ( ( Im
`  ( log `  x
) )  e.  RR  /\  -u pi  <  ( Im
`  ( log `  x
) )  /\  (
Im `  ( log `  x ) )  < 
pi ) )
3415, 17, 28, 33syl3anbrc 1180 . . . . 5  |-  ( x  e.  D  ->  (
Im `  ( log `  x ) )  e.  ( -u pi (,) pi ) )
35 imf 12909 . . . . . 6  |-  Im : CC
--> RR
36 ffn 5731 . . . . . 6  |-  ( Im : CC --> RR  ->  Im  Fn  CC )
37 elpreima 6001 . . . . . 6  |-  ( Im  Fn  CC  ->  (
( log `  x
)  e.  ( `' Im " ( -u pi (,) pi ) )  <-> 
( ( log `  x
)  e.  CC  /\  ( Im `  ( log `  x ) )  e.  ( -u pi (,) pi ) ) ) )
3835, 36, 37mp2b 10 . . . . 5  |-  ( ( log `  x )  e.  ( `' Im " ( -u pi (,) pi ) )  <->  ( ( log `  x )  e.  CC  /\  ( Im
`  ( log `  x
) )  e.  (
-u pi (,) pi ) ) )
3914, 34, 38sylanbrc 664 . . . 4  |-  ( x  e.  D  ->  ( log `  x )  e.  ( `' Im "
( -u pi (,) pi ) ) )
4010, 39mprgbir 2828 . . 3  |-  ( log " D )  C_  ( `' Im " ( -u pi (,) pi ) )
41 df-ioo 11533 . . . . . . . . . 10  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
42 df-ioc 11534 . . . . . . . . . 10  |-  (,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <_  y ) } )
43 idd 24 . . . . . . . . . 10  |-  ( (
-u pi  e.  RR*  /\  w  e.  RR* )  ->  ( -u pi  <  w  ->  -u pi  <  w
) )
44 xrltle 11355 . . . . . . . . . 10  |-  ( ( w  e.  RR*  /\  pi  e.  RR* )  ->  (
w  <  pi  ->  w  <_  pi ) )
4541, 42, 43, 44ixxssixx 11543 . . . . . . . . 9  |-  ( -u pi (,) pi )  C_  ( -u pi (,] pi )
46 imass2 5372 . . . . . . . . 9  |-  ( (
-u pi (,) pi )  C_  ( -u pi (,] pi )  ->  ( `' Im " ( -u pi (,) pi ) ) 
C_  ( `' Im " ( -u pi (,] pi ) ) )
4745, 46ax-mp 5 . . . . . . . 8  |-  ( `' Im " ( -u pi (,) pi ) ) 
C_  ( `' Im " ( -u pi (,] pi ) )
48 logrn 22702 . . . . . . . 8  |-  ran  log  =  ( `' Im " ( -u pi (,] pi ) )
4947, 48sseqtr4i 3537 . . . . . . 7  |-  ( `' Im " ( -u pi (,) pi ) ) 
C_  ran  log
5049sseli 3500 . . . . . 6  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  x  e.  ran  log )
51 logef 22722 . . . . . 6  |-  ( x  e.  ran  log  ->  ( log `  ( exp `  x ) )  =  x )
5250, 51syl 16 . . . . 5  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  ( log `  ( exp `  x
) )  =  x )
53 elpreima 6001 . . . . . . . . . 10  |-  ( Im  Fn  CC  ->  (
x  e.  ( `' Im " ( -u pi (,) pi ) )  <-> 
( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) ) ) )
5435, 36, 53mp2b 10 . . . . . . . . 9  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  <->  ( x  e.  CC  /\  ( Im
`  x )  e.  ( -u pi (,) pi ) ) )
55 efcl 13680 . . . . . . . . . 10  |-  ( x  e.  CC  ->  ( exp `  x )  e.  CC )
5655adantr 465 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  ( Im `  x )  e.  ( -u pi (,) pi ) )  -> 
( exp `  x
)  e.  CC )
5754, 56sylbi 195 . . . . . . . 8  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  ( exp `  x )  e.  CC )
5854simplbi 460 . . . . . . . . . . 11  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  x  e.  CC )
5958imcld 12991 . . . . . . . . . 10  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  (
Im `  x )  e.  RR )
6054simprbi 464 . . . . . . . . . . . 12  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  (
Im `  x )  e.  ( -u pi (,) pi ) )
61 eliooord 11584 . . . . . . . . . . . 12  |-  ( ( Im `  x )  e.  ( -u pi (,) pi )  ->  ( -u pi  <  ( Im
`  x )  /\  ( Im `  x )  <  pi ) )
6260, 61syl 16 . . . . . . . . . . 11  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  ( -u pi  <  ( Im
`  x )  /\  ( Im `  x )  <  pi ) )
6362simprd 463 . . . . . . . . . 10  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  (
Im `  x )  <  pi )
6459, 63ltned 9720 . . . . . . . . 9  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  (
Im `  x )  =/=  pi )
6552adantr 465 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( log `  ( exp `  x ) )  =  x )
6665fveq2d 5870 . . . . . . . . . . . 12  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( Im `  ( log `  ( exp `  x
) ) )  =  ( Im `  x
) )
67 simpr 461 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( exp `  x
)  e.  ( -oo (,] 0 ) )
68 mnfxr 11323 . . . . . . . . . . . . . . . . . 18  |- -oo  e.  RR*
69 0re 9596 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
70 elioc2 11587 . . . . . . . . . . . . . . . . . 18  |-  ( ( -oo  e.  RR*  /\  0  e.  RR )  ->  (
( exp `  x
)  e.  ( -oo (,] 0 )  <->  ( ( exp `  x )  e.  RR  /\ -oo  <  ( exp `  x )  /\  ( exp `  x
)  <_  0 ) ) )
7168, 69, 70mp2an 672 . . . . . . . . . . . . . . . . 17  |-  ( ( exp `  x )  e.  ( -oo (,] 0 )  <->  ( ( exp `  x )  e.  RR  /\ -oo  <  ( exp `  x )  /\  ( exp `  x
)  <_  0 ) )
7267, 71sylib 196 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( ( exp `  x
)  e.  RR  /\ -oo 
<  ( exp `  x
)  /\  ( exp `  x )  <_  0
) )
7372simp1d 1008 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( exp `  x
)  e.  RR )
7473renegcld 9986 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  ->  -u ( exp `  x
)  e.  RR )
75 efne0 13693 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  ( exp `  x )  =/=  0 )
7658, 75syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  ( exp `  x )  =/=  0 )
7776adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( exp `  x
)  =/=  0 )
7877necomd 2738 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
0  =/=  ( exp `  x ) )
79 0red 9597 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
0  e.  RR )
8072simp3d 1010 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( exp `  x
)  <_  0 )
8173, 79, 80leltned 9735 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( ( exp `  x
)  <  0  <->  0  =/=  ( exp `  x ) ) )
8278, 81mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( exp `  x
)  <  0 )
8373lt0neg1d 10122 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( ( exp `  x
)  <  0  <->  0  <  -u ( exp `  x
) ) )
8482, 83mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
0  <  -u ( exp `  x ) )
8574, 84elrpd 11254 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  ->  -u ( exp `  x
)  e.  RR+ )
86 lognegb 22730 . . . . . . . . . . . . . . 15  |-  ( ( ( exp `  x
)  e.  CC  /\  ( exp `  x )  =/=  0 )  -> 
( -u ( exp `  x
)  e.  RR+  <->  ( Im `  ( log `  ( exp `  x ) ) )  =  pi ) )
8757, 76, 86syl2anc 661 . . . . . . . . . . . . . 14  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  ( -u ( exp `  x
)  e.  RR+  <->  ( Im `  ( log `  ( exp `  x ) ) )  =  pi ) )
8887adantr 465 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( -u ( exp `  x
)  e.  RR+  <->  ( Im `  ( log `  ( exp `  x ) ) )  =  pi ) )
8985, 88mpbid 210 . . . . . . . . . . . 12  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( Im `  ( log `  ( exp `  x
) ) )  =  pi )
9066, 89eqtr3d 2510 . . . . . . . . . . 11  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( Im `  x
)  =  pi )
9190ex 434 . . . . . . . . . 10  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  (
( exp `  x
)  e.  ( -oo (,] 0 )  ->  (
Im `  x )  =  pi ) )
9291necon3ad 2677 . . . . . . . . 9  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  (
( Im `  x
)  =/=  pi  ->  -.  ( exp `  x
)  e.  ( -oo (,] 0 ) ) )
9364, 92mpd 15 . . . . . . . 8  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  -.  ( exp `  x )  e.  ( -oo (,] 0 ) )
9457, 93eldifd 3487 . . . . . . 7  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  ( exp `  x )  e.  ( CC  \  ( -oo (,] 0 ) ) )
9594, 4syl6eleqr 2566 . . . . . 6  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  ( exp `  x )  e.  D )
96 funfvima2 6136 . . . . . . 7  |-  ( ( Fun  log  /\  D  C_  dom  log )  ->  (
( exp `  x
)  e.  D  -> 
( log `  ( exp `  x ) )  e.  ( log " D
) ) )
973, 8, 96mp2an 672 . . . . . 6  |-  ( ( exp `  x )  e.  D  ->  ( log `  ( exp `  x
) )  e.  ( log " D ) )
9895, 97syl 16 . . . . 5  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  ( log `  ( exp `  x
) )  e.  ( log " D ) )
9952, 98eqeltrrd 2556 . . . 4  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  x  e.  ( log " D
) )
10099ssriv 3508 . . 3  |-  ( `' Im " ( -u pi (,) pi ) ) 
C_  ( log " D
)
10140, 100eqssi 3520 . 2  |-  ( log " D )  =  ( `' Im " ( -u pi (,) pi ) )
102 imcncf 21170 . . . 4  |-  Im  e.  ( CC -cn-> RR )
103 ssid 3523 . . . . 5  |-  CC  C_  CC
104 ax-resscn 9549 . . . . 5  |-  RR  C_  CC
105 eqid 2467 . . . . . 6  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
106105cnfldtop 21054 . . . . . . . 8  |-  ( TopOpen ` fld )  e.  Top
107105cnfldtopon 21053 . . . . . . . . . 10  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
108107toponunii 19228 . . . . . . . . 9  |-  CC  =  U. ( TopOpen ` fld )
109108restid 14689 . . . . . . . 8  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
110106, 109ax-mp 5 . . . . . . 7  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
111110eqcomi 2480 . . . . . 6  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
112105tgioo2 21071 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
113105, 111, 112cncfcn 21176 . . . . 5  |-  ( ( CC  C_  CC  /\  RR  C_  CC )  ->  ( CC -cn-> RR )  =  ( ( TopOpen ` fld )  Cn  ( topGen `
 ran  (,) )
) )
114103, 104, 113mp2an 672 . . . 4  |-  ( CC
-cn-> RR )  =  ( ( TopOpen ` fld )  Cn  ( topGen `
 ran  (,) )
)
115102, 114eleqtri 2553 . . 3  |-  Im  e.  ( ( TopOpen ` fld )  Cn  ( topGen `
 ran  (,) )
)
116 iooretop 21036 . . 3  |-  ( -u pi (,) pi )  e.  ( topGen `  ran  (,) )
117 cnima 19560 . . 3  |-  ( ( Im  e.  ( (
TopOpen ` fld )  Cn  ( topGen ` 
ran  (,) ) )  /\  ( -u pi (,) pi )  e.  ( topGen ` 
ran  (,) ) )  -> 
( `' Im "
( -u pi (,) pi ) )  e.  (
TopOpen ` fld ) )
118115, 116, 117mp2an 672 . 2  |-  ( `' Im " ( -u pi (,) pi ) )  e.  ( TopOpen ` fld )
119101, 118eqeltri 2551 1  |-  ( log " D )  e.  (
TopOpen ` fld )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814    \ cdif 3473    C_ wss 3476   {csn 4027   class class class wbr 4447   `'ccnv 4998   dom cdm 4999   ran crn 5000   "cima 5002   Fun wfun 5582    Fn wfn 5583   -->wf 5584   -1-1-onto->wf1o 5587   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   0cc0 9492   -oocmnf 9626   RR*cxr 9627    < clt 9628    <_ cle 9629   -ucneg 9806   RR+crp 11220   (,)cioo 11529   (,]cioc 11530   Imcim 12894   expce 13659   picpi 13664   ↾t crest 14676   TopOpenctopn 14677   topGenctg 14693  ℂfldccnfld 18219   Topctop 19189    Cn ccn 19519   -cn->ccncf 21143   logclog 22698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ioc 11534  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-mod 11965  df-seq 12076  df-exp 12135  df-fac 12322  df-bc 12349  df-hash 12374  df-shft 12863  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-limsup 13257  df-clim 13274  df-rlim 13275  df-sum 13472  df-ef 13665  df-sin 13667  df-cos 13668  df-pi 13670  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-fbas 18215  df-fg 18216  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-lp 19431  df-perf 19432  df-cn 19522  df-cnp 19523  df-haus 19610  df-tx 19826  df-hmeo 20019  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204  df-xms 20586  df-ms 20587  df-tms 20588  df-cncf 21145  df-limc 22033  df-dv 22034  df-log 22700
This theorem is referenced by:  dvlog  22788
  Copyright terms: Public domain W3C validator