MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvloglem Structured version   Unicode version

Theorem dvloglem 22105
Description: Lemma for dvlog 22108. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypothesis
Ref Expression
logcn.d  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
Assertion
Ref Expression
dvloglem  |-  ( log " D )  e.  (
TopOpen ` fld )

Proof of Theorem dvloglem
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logf1o 22028 . . . . . 6  |-  log :
( CC  \  {
0 } ) -1-1-onto-> ran  log
2 f1ofun 5655 . . . . . 6  |-  ( log
: ( CC  \  { 0 } ) -1-1-onto-> ran 
log  ->  Fun  log )
31, 2ax-mp 5 . . . . 5  |-  Fun  log
4 logcn.d . . . . . . 7  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
54logdmss 22099 . . . . . 6  |-  D  C_  ( CC  \  { 0 } )
6 f1odm 5657 . . . . . . 7  |-  ( log
: ( CC  \  { 0 } ) -1-1-onto-> ran 
log  ->  dom  log  =  ( CC  \  { 0 } ) )
71, 6ax-mp 5 . . . . . 6  |-  dom  log  =  ( CC  \  { 0 } )
85, 7sseqtr4i 3401 . . . . 5  |-  D  C_  dom  log
9 funimass4 5754 . . . . 5  |-  ( ( Fun  log  /\  D  C_  dom  log )  ->  (
( log " D
)  C_  ( `' Im " ( -u pi (,) pi ) )  <->  A. x  e.  D  ( log `  x )  e.  ( `' Im " ( -u pi (,) pi ) ) ) )
103, 8, 9mp2an 672 . . . 4  |-  ( ( log " D ) 
C_  ( `' Im " ( -u pi (,) pi ) )  <->  A. x  e.  D  ( log `  x )  e.  ( `' Im " ( -u pi (,) pi ) ) )
114ellogdm 22096 . . . . . . 7  |-  ( x  e.  D  <->  ( x  e.  CC  /\  ( x  e.  RR  ->  x  e.  RR+ ) ) )
1211simplbi 460 . . . . . 6  |-  ( x  e.  D  ->  x  e.  CC )
134logdmn0 22097 . . . . . 6  |-  ( x  e.  D  ->  x  =/=  0 )
1412, 13logcld 22034 . . . . 5  |-  ( x  e.  D  ->  ( log `  x )  e.  CC )
1514imcld 12696 . . . . . 6  |-  ( x  e.  D  ->  (
Im `  ( log `  x ) )  e.  RR )
1612, 13logimcld 22035 . . . . . . 7  |-  ( x  e.  D  ->  ( -u pi  <  ( Im
`  ( log `  x
) )  /\  (
Im `  ( log `  x ) )  <_  pi ) )
1716simpld 459 . . . . . 6  |-  ( x  e.  D  ->  -u pi  <  ( Im `  ( log `  x ) ) )
184logdmnrp 22098 . . . . . . . . 9  |-  ( x  e.  D  ->  -.  -u x  e.  RR+ )
19 lognegb 22050 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  x  =/=  0 )  -> 
( -u x  e.  RR+  <->  (
Im `  ( log `  x ) )  =  pi ) )
2012, 13, 19syl2anc 661 . . . . . . . . . 10  |-  ( x  e.  D  ->  ( -u x  e.  RR+  <->  ( Im `  ( log `  x
) )  =  pi ) )
2120necon3bbid 2654 . . . . . . . . 9  |-  ( x  e.  D  ->  ( -.  -u x  e.  RR+  <->  (
Im `  ( log `  x ) )  =/= 
pi ) )
2218, 21mpbid 210 . . . . . . . 8  |-  ( x  e.  D  ->  (
Im `  ( log `  x ) )  =/= 
pi )
2322necomd 2707 . . . . . . 7  |-  ( x  e.  D  ->  pi  =/=  ( Im `  ( log `  x ) ) )
24 pire 21933 . . . . . . . . 9  |-  pi  e.  RR
2524a1i 11 . . . . . . . 8  |-  ( x  e.  D  ->  pi  e.  RR )
2616simprd 463 . . . . . . . 8  |-  ( x  e.  D  ->  (
Im `  ( log `  x ) )  <_  pi )
2715, 25, 26leltned 9537 . . . . . . 7  |-  ( x  e.  D  ->  (
( Im `  ( log `  x ) )  <  pi  <->  pi  =/=  ( Im `  ( log `  x ) ) ) )
2823, 27mpbird 232 . . . . . 6  |-  ( x  e.  D  ->  (
Im `  ( log `  x ) )  < 
pi )
2924renegcli 9682 . . . . . . . 8  |-  -u pi  e.  RR
3029rexri 9448 . . . . . . 7  |-  -u pi  e.  RR*
3124rexri 9448 . . . . . . 7  |-  pi  e.  RR*
32 elioo2 11353 . . . . . . 7  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR* )  ->  ( ( Im `  ( log `  x ) )  e.  ( -u pi (,) pi )  <->  ( (
Im `  ( log `  x ) )  e.  RR  /\  -u pi  <  ( Im `  ( log `  x ) )  /\  ( Im `  ( log `  x ) )  <  pi ) ) )
3330, 31, 32mp2an 672 . . . . . 6  |-  ( ( Im `  ( log `  x ) )  e.  ( -u pi (,) pi )  <->  ( ( Im
`  ( log `  x
) )  e.  RR  /\  -u pi  <  ( Im
`  ( log `  x
) )  /\  (
Im `  ( log `  x ) )  < 
pi ) )
3415, 17, 28, 33syl3anbrc 1172 . . . . 5  |-  ( x  e.  D  ->  (
Im `  ( log `  x ) )  e.  ( -u pi (,) pi ) )
35 imf 12614 . . . . . 6  |-  Im : CC
--> RR
36 ffn 5571 . . . . . 6  |-  ( Im : CC --> RR  ->  Im  Fn  CC )
37 elpreima 5835 . . . . . 6  |-  ( Im  Fn  CC  ->  (
( log `  x
)  e.  ( `' Im " ( -u pi (,) pi ) )  <-> 
( ( log `  x
)  e.  CC  /\  ( Im `  ( log `  x ) )  e.  ( -u pi (,) pi ) ) ) )
3835, 36, 37mp2b 10 . . . . 5  |-  ( ( log `  x )  e.  ( `' Im " ( -u pi (,) pi ) )  <->  ( ( log `  x )  e.  CC  /\  ( Im
`  ( log `  x
) )  e.  (
-u pi (,) pi ) ) )
3914, 34, 38sylanbrc 664 . . . 4  |-  ( x  e.  D  ->  ( log `  x )  e.  ( `' Im "
( -u pi (,) pi ) ) )
4010, 39mprgbir 2798 . . 3  |-  ( log " D )  C_  ( `' Im " ( -u pi (,) pi ) )
41 df-ioo 11316 . . . . . . . . . 10  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
42 df-ioc 11317 . . . . . . . . . 10  |-  (,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <_  y ) } )
43 idd 24 . . . . . . . . . 10  |-  ( (
-u pi  e.  RR*  /\  w  e.  RR* )  ->  ( -u pi  <  w  ->  -u pi  <  w
) )
44 xrltle 11138 . . . . . . . . . 10  |-  ( ( w  e.  RR*  /\  pi  e.  RR* )  ->  (
w  <  pi  ->  w  <_  pi ) )
4541, 42, 43, 44ixxssixx 11326 . . . . . . . . 9  |-  ( -u pi (,) pi )  C_  ( -u pi (,] pi )
46 imass2 5216 . . . . . . . . 9  |-  ( (
-u pi (,) pi )  C_  ( -u pi (,] pi )  ->  ( `' Im " ( -u pi (,) pi ) ) 
C_  ( `' Im " ( -u pi (,] pi ) ) )
4745, 46ax-mp 5 . . . . . . . 8  |-  ( `' Im " ( -u pi (,) pi ) ) 
C_  ( `' Im " ( -u pi (,] pi ) )
48 logrn 22022 . . . . . . . 8  |-  ran  log  =  ( `' Im " ( -u pi (,] pi ) )
4947, 48sseqtr4i 3401 . . . . . . 7  |-  ( `' Im " ( -u pi (,) pi ) ) 
C_  ran  log
5049sseli 3364 . . . . . 6  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  x  e.  ran  log )
51 logef 22042 . . . . . 6  |-  ( x  e.  ran  log  ->  ( log `  ( exp `  x ) )  =  x )
5250, 51syl 16 . . . . 5  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  ( log `  ( exp `  x
) )  =  x )
53 elpreima 5835 . . . . . . . . . 10  |-  ( Im  Fn  CC  ->  (
x  e.  ( `' Im " ( -u pi (,) pi ) )  <-> 
( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) ) ) )
5435, 36, 53mp2b 10 . . . . . . . . 9  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  <->  ( x  e.  CC  /\  ( Im
`  x )  e.  ( -u pi (,) pi ) ) )
55 efcl 13380 . . . . . . . . . 10  |-  ( x  e.  CC  ->  ( exp `  x )  e.  CC )
5655adantr 465 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  ( Im `  x )  e.  ( -u pi (,) pi ) )  -> 
( exp `  x
)  e.  CC )
5754, 56sylbi 195 . . . . . . . 8  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  ( exp `  x )  e.  CC )
5854simplbi 460 . . . . . . . . . . 11  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  x  e.  CC )
5958imcld 12696 . . . . . . . . . 10  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  (
Im `  x )  e.  RR )
6054simprbi 464 . . . . . . . . . . . 12  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  (
Im `  x )  e.  ( -u pi (,) pi ) )
61 eliooord 11367 . . . . . . . . . . . 12  |-  ( ( Im `  x )  e.  ( -u pi (,) pi )  ->  ( -u pi  <  ( Im
`  x )  /\  ( Im `  x )  <  pi ) )
6260, 61syl 16 . . . . . . . . . . 11  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  ( -u pi  <  ( Im
`  x )  /\  ( Im `  x )  <  pi ) )
6362simprd 463 . . . . . . . . . 10  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  (
Im `  x )  <  pi )
6459, 63ltned 9522 . . . . . . . . 9  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  (
Im `  x )  =/=  pi )
6552adantr 465 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( log `  ( exp `  x ) )  =  x )
6665fveq2d 5707 . . . . . . . . . . . 12  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( Im `  ( log `  ( exp `  x
) ) )  =  ( Im `  x
) )
67 simpr 461 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( exp `  x
)  e.  ( -oo (,] 0 ) )
68 mnfxr 11106 . . . . . . . . . . . . . . . . . 18  |- -oo  e.  RR*
69 0re 9398 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
70 elioc2 11370 . . . . . . . . . . . . . . . . . 18  |-  ( ( -oo  e.  RR*  /\  0  e.  RR )  ->  (
( exp `  x
)  e.  ( -oo (,] 0 )  <->  ( ( exp `  x )  e.  RR  /\ -oo  <  ( exp `  x )  /\  ( exp `  x
)  <_  0 ) ) )
7168, 69, 70mp2an 672 . . . . . . . . . . . . . . . . 17  |-  ( ( exp `  x )  e.  ( -oo (,] 0 )  <->  ( ( exp `  x )  e.  RR  /\ -oo  <  ( exp `  x )  /\  ( exp `  x
)  <_  0 ) )
7267, 71sylib 196 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( ( exp `  x
)  e.  RR  /\ -oo 
<  ( exp `  x
)  /\  ( exp `  x )  <_  0
) )
7372simp1d 1000 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( exp `  x
)  e.  RR )
7473renegcld 9787 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  ->  -u ( exp `  x
)  e.  RR )
75 efne0 13393 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  ( exp `  x )  =/=  0 )
7658, 75syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  ( exp `  x )  =/=  0 )
7776adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( exp `  x
)  =/=  0 )
7877necomd 2707 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
0  =/=  ( exp `  x ) )
79 0red 9399 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
0  e.  RR )
8072simp3d 1002 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( exp `  x
)  <_  0 )
8173, 79, 80leltned 9537 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( ( exp `  x
)  <  0  <->  0  =/=  ( exp `  x ) ) )
8278, 81mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( exp `  x
)  <  0 )
8373lt0neg1d 9921 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( ( exp `  x
)  <  0  <->  0  <  -u ( exp `  x
) ) )
8482, 83mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
0  <  -u ( exp `  x ) )
8574, 84elrpd 11037 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  ->  -u ( exp `  x
)  e.  RR+ )
86 lognegb 22050 . . . . . . . . . . . . . . 15  |-  ( ( ( exp `  x
)  e.  CC  /\  ( exp `  x )  =/=  0 )  -> 
( -u ( exp `  x
)  e.  RR+  <->  ( Im `  ( log `  ( exp `  x ) ) )  =  pi ) )
8757, 76, 86syl2anc 661 . . . . . . . . . . . . . 14  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  ( -u ( exp `  x
)  e.  RR+  <->  ( Im `  ( log `  ( exp `  x ) ) )  =  pi ) )
8887adantr 465 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( -u ( exp `  x
)  e.  RR+  <->  ( Im `  ( log `  ( exp `  x ) ) )  =  pi ) )
8985, 88mpbid 210 . . . . . . . . . . . 12  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( Im `  ( log `  ( exp `  x
) ) )  =  pi )
9066, 89eqtr3d 2477 . . . . . . . . . . 11  |-  ( ( x  e.  ( `' Im " ( -u pi (,) pi ) )  /\  ( exp `  x
)  e.  ( -oo (,] 0 ) )  -> 
( Im `  x
)  =  pi )
9190ex 434 . . . . . . . . . 10  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  (
( exp `  x
)  e.  ( -oo (,] 0 )  ->  (
Im `  x )  =  pi ) )
9291necon3ad 2656 . . . . . . . . 9  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  (
( Im `  x
)  =/=  pi  ->  -.  ( exp `  x
)  e.  ( -oo (,] 0 ) ) )
9364, 92mpd 15 . . . . . . . 8  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  -.  ( exp `  x )  e.  ( -oo (,] 0 ) )
9457, 93eldifd 3351 . . . . . . 7  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  ( exp `  x )  e.  ( CC  \  ( -oo (,] 0 ) ) )
9594, 4syl6eleqr 2534 . . . . . 6  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  ( exp `  x )  e.  D )
96 funfvima2 5965 . . . . . . 7  |-  ( ( Fun  log  /\  D  C_  dom  log )  ->  (
( exp `  x
)  e.  D  -> 
( log `  ( exp `  x ) )  e.  ( log " D
) ) )
973, 8, 96mp2an 672 . . . . . 6  |-  ( ( exp `  x )  e.  D  ->  ( log `  ( exp `  x
) )  e.  ( log " D ) )
9895, 97syl 16 . . . . 5  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  ( log `  ( exp `  x
) )  e.  ( log " D ) )
9952, 98eqeltrrd 2518 . . . 4  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  ->  x  e.  ( log " D
) )
10099ssriv 3372 . . 3  |-  ( `' Im " ( -u pi (,) pi ) ) 
C_  ( log " D
)
10140, 100eqssi 3384 . 2  |-  ( log " D )  =  ( `' Im " ( -u pi (,) pi ) )
102 imcncf 20491 . . . 4  |-  Im  e.  ( CC -cn-> RR )
103 ssid 3387 . . . . 5  |-  CC  C_  CC
104 ax-resscn 9351 . . . . 5  |-  RR  C_  CC
105 eqid 2443 . . . . . 6  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
106105cnfldtop 20375 . . . . . . . 8  |-  ( TopOpen ` fld )  e.  Top
107105cnfldtopon 20374 . . . . . . . . . 10  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
108107toponunii 18549 . . . . . . . . 9  |-  CC  =  U. ( TopOpen ` fld )
109108restid 14384 . . . . . . . 8  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
110106, 109ax-mp 5 . . . . . . 7  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
111110eqcomi 2447 . . . . . 6  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
112105tgioo2 20392 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
113105, 111, 112cncfcn 20497 . . . . 5  |-  ( ( CC  C_  CC  /\  RR  C_  CC )  ->  ( CC -cn-> RR )  =  ( ( TopOpen ` fld )  Cn  ( topGen `
 ran  (,) )
) )
114103, 104, 113mp2an 672 . . . 4  |-  ( CC
-cn-> RR )  =  ( ( TopOpen ` fld )  Cn  ( topGen `
 ran  (,) )
)
115102, 114eleqtri 2515 . . 3  |-  Im  e.  ( ( TopOpen ` fld )  Cn  ( topGen `
 ran  (,) )
)
116 iooretop 20357 . . 3  |-  ( -u pi (,) pi )  e.  ( topGen `  ran  (,) )
117 cnima 18881 . . 3  |-  ( ( Im  e.  ( (
TopOpen ` fld )  Cn  ( topGen ` 
ran  (,) ) )  /\  ( -u pi (,) pi )  e.  ( topGen ` 
ran  (,) ) )  -> 
( `' Im "
( -u pi (,) pi ) )  e.  (
TopOpen ` fld ) )
118115, 116, 117mp2an 672 . 2  |-  ( `' Im " ( -u pi (,) pi ) )  e.  ( TopOpen ` fld )
119101, 118eqeltri 2513 1  |-  ( log " D )  e.  (
TopOpen ` fld )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2618   A.wral 2727    \ cdif 3337    C_ wss 3340   {csn 3889   class class class wbr 4304   `'ccnv 4851   dom cdm 4852   ran crn 4853   "cima 4855   Fun wfun 5424    Fn wfn 5425   -->wf 5426   -1-1-onto->wf1o 5429   ` cfv 5430  (class class class)co 6103   CCcc 9292   RRcr 9293   0cc0 9294   -oocmnf 9428   RR*cxr 9429    < clt 9430    <_ cle 9431   -ucneg 9608   RR+crp 11003   (,)cioo 11312   (,]cioc 11313   Imcim 12599   expce 13359   picpi 13364   ↾t crest 14371   TopOpenctopn 14372   topGenctg 14388  ℂfldccnfld 17830   Topctop 18510    Cn ccn 18840   -cn->ccncf 20464   logclog 22018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-inf2 7859  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372  ax-addf 9373  ax-mulf 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-iin 4186  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-se 4692  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-isom 5439  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-of 6332  df-om 6489  df-1st 6589  df-2nd 6590  df-supp 6703  df-recs 6844  df-rdg 6878  df-1o 6932  df-2o 6933  df-oadd 6936  df-er 7113  df-map 7228  df-pm 7229  df-ixp 7276  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-fsupp 7633  df-fi 7673  df-sup 7703  df-oi 7736  df-card 8121  df-cda 8349  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-4 10394  df-5 10395  df-6 10396  df-7 10397  df-8 10398  df-9 10399  df-10 10400  df-n0 10592  df-z 10659  df-dec 10768  df-uz 10874  df-q 10966  df-rp 11004  df-xneg 11101  df-xadd 11102  df-xmul 11103  df-ioo 11316  df-ioc 11317  df-ico 11318  df-icc 11319  df-fz 11450  df-fzo 11561  df-fl 11654  df-mod 11721  df-seq 11819  df-exp 11878  df-fac 12064  df-bc 12091  df-hash 12116  df-shft 12568  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-limsup 12961  df-clim 12978  df-rlim 12979  df-sum 13176  df-ef 13365  df-sin 13367  df-cos 13368  df-pi 13370  df-struct 14188  df-ndx 14189  df-slot 14190  df-base 14191  df-sets 14192  df-ress 14193  df-plusg 14263  df-mulr 14264  df-starv 14265  df-sca 14266  df-vsca 14267  df-ip 14268  df-tset 14269  df-ple 14270  df-ds 14272  df-unif 14273  df-hom 14274  df-cco 14275  df-rest 14373  df-topn 14374  df-0g 14392  df-gsum 14393  df-topgen 14394  df-pt 14395  df-prds 14398  df-xrs 14452  df-qtop 14457  df-imas 14458  df-xps 14460  df-mre 14536  df-mrc 14537  df-acs 14539  df-mnd 15427  df-submnd 15477  df-mulg 15560  df-cntz 15847  df-cmn 16291  df-psmet 17821  df-xmet 17822  df-met 17823  df-bl 17824  df-mopn 17825  df-fbas 17826  df-fg 17827  df-cnfld 17831  df-top 18515  df-bases 18517  df-topon 18518  df-topsp 18519  df-cld 18635  df-ntr 18636  df-cls 18637  df-nei 18714  df-lp 18752  df-perf 18753  df-cn 18843  df-cnp 18844  df-haus 18931  df-tx 19147  df-hmeo 19340  df-fil 19431  df-fm 19523  df-flim 19524  df-flf 19525  df-xms 19907  df-ms 19908  df-tms 19909  df-cncf 20466  df-limc 21353  df-dv 21354  df-log 22020
This theorem is referenced by:  dvlog  22108
  Copyright terms: Public domain W3C validator