MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlog Structured version   Unicode version

Theorem dvlog 23588
Description: The derivative of the complex logarithm function. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypothesis
Ref Expression
logcn.d  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
Assertion
Ref Expression
dvlog  |-  ( CC 
_D  ( log  |`  D ) )  =  ( x  e.  D  |->  ( 1  /  x ) )
Distinct variable group:    x, D

Proof of Theorem dvlog
StepHypRef Expression
1 eqid 2423 . . . 4  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
21cnfldtop 21796 . . . . . 6  |-  ( TopOpen ` fld )  e.  Top
31cnfldtopon 21795 . . . . . . . 8  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
43toponunii 19939 . . . . . . 7  |-  CC  =  U. ( TopOpen ` fld )
54restid 15325 . . . . . 6  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
62, 5ax-mp 5 . . . . 5  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
76eqcomi 2436 . . . 4  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
8 cnelprrecn 9634 . . . . 5  |-  CC  e.  { RR ,  CC }
98a1i 11 . . . 4  |-  ( T. 
->  CC  e.  { RR ,  CC } )
10 logcn.d . . . . . 6  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
1110logdmopn 23586 . . . . 5  |-  D  e.  ( TopOpen ` fld )
1211a1i 11 . . . 4  |-  ( T. 
->  D  e.  ( TopOpen
` fld
) )
13 logf1o 23506 . . . . . . . . 9  |-  log :
( CC  \  {
0 } ) -1-1-onto-> ran  log
14 f1of1 5828 . . . . . . . . 9  |-  ( log
: ( CC  \  { 0 } ) -1-1-onto-> ran 
log  ->  log : ( CC 
\  { 0 } ) -1-1-> ran  log )
1513, 14ax-mp 5 . . . . . . . 8  |-  log :
( CC  \  {
0 } ) -1-1-> ran  log
1610logdmss 23579 . . . . . . . 8  |-  D  C_  ( CC  \  { 0 } )
17 f1ores 5843 . . . . . . . 8  |-  ( ( log : ( CC 
\  { 0 } ) -1-1-> ran  log  /\  D  C_  ( CC  \  { 0 } ) )  -> 
( log  |`  D ) : D -1-1-onto-> ( log " D
) )
1815, 16, 17mp2an 677 . . . . . . 7  |-  ( log  |`  D ) : D -1-1-onto-> ( log " D )
19 f1ocnv 5841 . . . . . . 7  |-  ( ( log  |`  D ) : D -1-1-onto-> ( log " D
)  ->  `' ( log  |`  D ) : ( log " D
)
-1-1-onto-> D )
2018, 19ax-mp 5 . . . . . 6  |-  `' ( log  |`  D ) : ( log " D
)
-1-1-onto-> D
21 df-log 23498 . . . . . . . . . . 11  |-  log  =  `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )
2221reseq1i 5118 . . . . . . . . . 10  |-  ( log  |`  D )  =  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  |`  D )
2322cnveqi 5026 . . . . . . . . 9  |-  `' ( log  |`  D )  =  `' ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  |`  D )
24 eff 14129 . . . . . . . . . . 11  |-  exp : CC
--> CC
25 cnvimass 5205 . . . . . . . . . . . 12  |-  ( `' Im " ( -u pi (,] pi ) ) 
C_  dom  Im
26 imf 13170 . . . . . . . . . . . . 13  |-  Im : CC
--> RR
2726fdmi 5749 . . . . . . . . . . . 12  |-  dom  Im  =  CC
2825, 27sseqtri 3497 . . . . . . . . . . 11  |-  ( `' Im " ( -u pi (,] pi ) ) 
C_  CC
29 fssres 5764 . . . . . . . . . . 11  |-  ( ( exp : CC --> CC  /\  ( `' Im " ( -u pi (,] pi ) ) 
C_  CC )  -> 
( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) : ( `' Im " ( -u pi (,] pi ) ) --> CC )
3024, 28, 29mp2an 677 . . . . . . . . . 10  |-  ( exp  |`  ( `' Im "
( -u pi (,] pi ) ) ) : ( `' Im "
( -u pi (,] pi ) ) --> CC
31 ffun 5746 . . . . . . . . . 10  |-  ( ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) : ( `' Im " ( -u pi (,] pi ) ) --> CC  ->  Fun  ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) )
32 funcnvres2 5670 . . . . . . . . . 10  |-  ( Fun  ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  ->  `' ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  |`  D )  =  ( ( exp  |`  ( `' Im "
( -u pi (,] pi ) ) )  |`  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) " D ) ) )
3330, 31, 32mp2b 10 . . . . . . . . 9  |-  `' ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  |`  D )  =  ( ( exp  |`  ( `' Im "
( -u pi (,] pi ) ) )  |`  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) " D ) )
34 cnvimass 5205 . . . . . . . . . . 11  |-  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) " D ) 
C_  dom  ( exp  |`  ( `' Im "
( -u pi (,] pi ) ) )
3530fdmi 5749 . . . . . . . . . . 11  |-  dom  ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  =  ( `' Im "
( -u pi (,] pi ) )
3634, 35sseqtri 3497 . . . . . . . . . 10  |-  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) " D ) 
C_  ( `' Im " ( -u pi (,] pi ) )
37 resabs1 5150 . . . . . . . . . 10  |-  ( ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) " D ) 
C_  ( `' Im " ( -u pi (,] pi ) )  ->  (
( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  |`  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )
" D ) )  =  ( exp  |`  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) " D ) ) )
3836, 37ax-mp 5 . . . . . . . . 9  |-  ( ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  |`  ( `' ( exp  |`  ( `' Im "
( -u pi (,] pi ) ) ) " D ) )  =  ( exp  |`  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) " D ) )
3923, 33, 383eqtri 2456 . . . . . . . 8  |-  `' ( log  |`  D )  =  ( exp  |`  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) " D ) )
4021imaeq1i 5182 . . . . . . . . 9  |-  ( log " D )  =  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) " D )
4140reseq2i 5119 . . . . . . . 8  |-  ( exp  |`  ( log " D
) )  =  ( exp  |`  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )
" D ) )
4239, 41eqtr4i 2455 . . . . . . 7  |-  `' ( log  |`  D )  =  ( exp  |`  ( log " D ) )
43 f1oeq1 5820 . . . . . . 7  |-  ( `' ( log  |`  D )  =  ( exp  |`  ( log " D ) )  ->  ( `' ( log  |`  D ) : ( log " D
)
-1-1-onto-> D 
<->  ( exp  |`  ( log " D ) ) : ( log " D
)
-1-1-onto-> D ) )
4442, 43ax-mp 5 . . . . . 6  |-  ( `' ( log  |`  D ) : ( log " D
)
-1-1-onto-> D 
<->  ( exp  |`  ( log " D ) ) : ( log " D
)
-1-1-onto-> D )
4520, 44mpbi 212 . . . . 5  |-  ( exp  |`  ( log " D
) ) : ( log " D ) -1-1-onto-> D
4645a1i 11 . . . 4  |-  ( T. 
->  ( exp  |`  ( log " D ) ) : ( log " D
)
-1-1-onto-> D )
4742cnveqi 5026 . . . . . 6  |-  `' `' ( log  |`  D )  =  `' ( exp  |`  ( log " D ) )
48 relres 5149 . . . . . . 7  |-  Rel  ( log  |`  D )
49 dfrel2 5303 . . . . . . 7  |-  ( Rel  ( log  |`  D )  <->  `' `' ( log  |`  D )  =  ( log  |`  D ) )
5048, 49mpbi 212 . . . . . 6  |-  `' `' ( log  |`  D )  =  ( log  |`  D )
5147, 50eqtr3i 2454 . . . . 5  |-  `' ( exp  |`  ( log " D ) )  =  ( log  |`  D )
52 f1of 5829 . . . . . . 7  |-  ( ( log  |`  D ) : D -1-1-onto-> ( log " D
)  ->  ( log  |`  D ) : D --> ( log " D ) )
5318, 52mp1i 13 . . . . . 6  |-  ( T. 
->  ( log  |`  D ) : D --> ( log " D ) )
54 imassrn 5196 . . . . . . . 8  |-  ( log " D )  C_  ran  log
55 logrncn 23504 . . . . . . . . 9  |-  ( x  e.  ran  log  ->  x  e.  CC )
5655ssriv 3469 . . . . . . . 8  |-  ran  log  C_  CC
5754, 56sstri 3474 . . . . . . 7  |-  ( log " D )  C_  CC
5810logcn 23584 . . . . . . 7  |-  ( log  |`  D )  e.  ( D -cn-> CC )
59 cncffvrn 21922 . . . . . . 7  |-  ( ( ( log " D
)  C_  CC  /\  ( log  |`  D )  e.  ( D -cn-> CC ) )  ->  ( ( log  |`  D )  e.  ( D -cn-> ( log " D ) )  <->  ( log  |`  D ) : D --> ( log " D ) ) )
6057, 58, 59mp2an 677 . . . . . 6  |-  ( ( log  |`  D )  e.  ( D -cn-> ( log " D ) )  <->  ( log  |`  D ) : D --> ( log " D ) )
6153, 60sylibr 216 . . . . 5  |-  ( T. 
->  ( log  |`  D )  e.  ( D -cn-> ( log " D ) ) )
6251, 61syl5eqel 2515 . . . 4  |-  ( T. 
->  `' ( exp  |`  ( log " D ) )  e.  ( D -cn-> ( log " D ) ) )
63 ssid 3484 . . . . . . . . 9  |-  CC  C_  CC
641, 7dvres 22858 . . . . . . . . 9  |-  ( ( ( CC  C_  CC  /\ 
exp : CC --> CC )  /\  ( CC  C_  CC  /\  ( log " D
)  C_  CC )
)  ->  ( CC  _D  ( exp  |`  ( log " D ) ) )  =  ( ( CC  _D  exp )  |`  ( ( int `  ( TopOpen
` fld
) ) `  ( log " D ) ) ) )
6563, 24, 63, 57, 64mp4an 678 . . . . . . . 8  |-  ( CC 
_D  ( exp  |`  ( log " D ) ) )  =  ( ( CC  _D  exp )  |`  ( ( int `  ( TopOpen
` fld
) ) `  ( log " D ) ) )
66 dvef 22924 . . . . . . . . 9  |-  ( CC 
_D  exp )  =  exp
6710dvloglem 23585 . . . . . . . . . 10  |-  ( log " D )  e.  (
TopOpen ` fld )
68 isopn3i 20090 . . . . . . . . . 10  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( log " D
)  e.  ( TopOpen ` fld )
)  ->  ( ( int `  ( TopOpen ` fld ) ) `  ( log " D ) )  =  ( log " D
) )
692, 67, 68mp2an 677 . . . . . . . . 9  |-  ( ( int `  ( TopOpen ` fld )
) `  ( log " D ) )  =  ( log " D
)
7066, 69reseq12i 5120 . . . . . . . 8  |-  ( ( CC  _D  exp )  |`  ( ( int `  ( TopOpen
` fld
) ) `  ( log " D ) ) )  =  ( exp  |`  ( log " D
) )
7165, 70eqtri 2452 . . . . . . 7  |-  ( CC 
_D  ( exp  |`  ( log " D ) ) )  =  ( exp  |`  ( log " D
) )
7271dmeqi 5053 . . . . . 6  |-  dom  ( CC  _D  ( exp  |`  ( log " D ) ) )  =  dom  ( exp  |`  ( log " D
) )
73 dmres 5142 . . . . . 6  |-  dom  ( exp  |`  ( log " D
) )  =  ( ( log " D
)  i^i  dom  exp )
7424fdmi 5749 . . . . . . . 8  |-  dom  exp  =  CC
7557, 74sseqtr4i 3498 . . . . . . 7  |-  ( log " D )  C_  dom  exp
76 df-ss 3451 . . . . . . 7  |-  ( ( log " D ) 
C_  dom  exp  <->  ( ( log " D )  i^i 
dom  exp )  =  ( log " D ) )
7775, 76mpbi 212 . . . . . 6  |-  ( ( log " D )  i^i  dom  exp )  =  ( log " D
)
7872, 73, 773eqtri 2456 . . . . 5  |-  dom  ( CC  _D  ( exp  |`  ( log " D ) ) )  =  ( log " D )
7978a1i 11 . . . 4  |-  ( T. 
->  dom  ( CC  _D  ( exp  |`  ( log " D ) ) )  =  ( log " D
) )
80 neirr 2629 . . . . . 6  |-  -.  0  =/=  0
81 resss 5145 . . . . . . . . . . . . 13  |-  ( ( CC  _D  exp )  |`  ( ( int `  ( TopOpen
` fld
) ) `  ( log " D ) ) )  C_  ( CC  _D  exp )
8265, 81eqsstri 3495 . . . . . . . . . . . 12  |-  ( CC 
_D  ( exp  |`  ( log " D ) ) )  C_  ( CC  _D  exp )
8382, 66sseqtri 3497 . . . . . . . . . . 11  |-  ( CC 
_D  ( exp  |`  ( log " D ) ) )  C_  exp
84 rnss 5080 . . . . . . . . . . 11  |-  ( ( CC  _D  ( exp  |`  ( log " D
) ) )  C_  exp  ->  ran  ( CC  _D  ( exp  |`  ( log " D ) ) )  C_  ran  exp )
8583, 84ax-mp 5 . . . . . . . . . 10  |-  ran  ( CC  _D  ( exp  |`  ( log " D ) ) )  C_  ran  exp
86 eff2 14146 . . . . . . . . . . 11  |-  exp : CC
--> ( CC  \  {
0 } )
87 frn 5750 . . . . . . . . . . 11  |-  ( exp
: CC --> ( CC 
\  { 0 } )  ->  ran  exp  C_  ( CC  \  { 0 } ) )
8886, 87ax-mp 5 . . . . . . . . . 10  |-  ran  exp  C_  ( CC  \  {
0 } )
8985, 88sstri 3474 . . . . . . . . 9  |-  ran  ( CC  _D  ( exp  |`  ( log " D ) ) )  C_  ( CC  \  { 0 } )
9089sseli 3461 . . . . . . . 8  |-  ( 0  e.  ran  ( CC 
_D  ( exp  |`  ( log " D ) ) )  ->  0  e.  ( CC  \  { 0 } ) )
91 eldifsn 4123 . . . . . . . 8  |-  ( 0  e.  ( CC  \  { 0 } )  <-> 
( 0  e.  CC  /\  0  =/=  0 ) )
9290, 91sylib 200 . . . . . . 7  |-  ( 0  e.  ran  ( CC 
_D  ( exp  |`  ( log " D ) ) )  ->  ( 0  e.  CC  /\  0  =/=  0 ) )
9392simprd 465 . . . . . 6  |-  ( 0  e.  ran  ( CC 
_D  ( exp  |`  ( log " D ) ) )  ->  0  =/=  0 )
9480, 93mto 180 . . . . 5  |-  -.  0  e.  ran  ( CC  _D  ( exp  |`  ( log " D ) ) )
9594a1i 11 . . . 4  |-  ( T. 
->  -.  0  e.  ran  ( CC  _D  ( exp  |`  ( log " D
) ) ) )
961, 7, 9, 12, 46, 62, 79, 95dvcnv 22921 . . 3  |-  ( T. 
->  ( CC  _D  `' ( exp  |`  ( log " D ) ) )  =  ( x  e.  D  |->  ( 1  / 
( ( CC  _D  ( exp  |`  ( log " D ) ) ) `
 ( `' ( exp  |`  ( log " D ) ) `  x ) ) ) ) )
9796trud 1447 . 2  |-  ( CC 
_D  `' ( exp  |`  ( log " D
) ) )  =  ( x  e.  D  |->  ( 1  /  (
( CC  _D  ( exp  |`  ( log " D
) ) ) `  ( `' ( exp  |`  ( log " D ) ) `
 x ) ) ) )
9851oveq2i 6314 . 2  |-  ( CC 
_D  `' ( exp  |`  ( log " D
) ) )  =  ( CC  _D  ( log  |`  D ) )
9971fveq1i 5880 . . . . 5  |-  ( ( CC  _D  ( exp  |`  ( log " D
) ) ) `  ( `' ( exp  |`  ( log " D ) ) `
 x ) )  =  ( ( exp  |`  ( log " D
) ) `  ( `' ( exp  |`  ( log " D ) ) `
 x ) )
100 f1ocnvfv2 6189 . . . . . 6  |-  ( ( ( exp  |`  ( log " D ) ) : ( log " D
)
-1-1-onto-> D  /\  x  e.  D
)  ->  ( ( exp  |`  ( log " D
) ) `  ( `' ( exp  |`  ( log " D ) ) `
 x ) )  =  x )
10145, 100mpan 675 . . . . 5  |-  ( x  e.  D  ->  (
( exp  |`  ( log " D ) ) `  ( `' ( exp  |`  ( log " D ) ) `
 x ) )  =  x )
10299, 101syl5eq 2476 . . . 4  |-  ( x  e.  D  ->  (
( CC  _D  ( exp  |`  ( log " D
) ) ) `  ( `' ( exp  |`  ( log " D ) ) `
 x ) )  =  x )
103102oveq2d 6319 . . 3  |-  ( x  e.  D  ->  (
1  /  ( ( CC  _D  ( exp  |`  ( log " D
) ) ) `  ( `' ( exp  |`  ( log " D ) ) `
 x ) ) )  =  ( 1  /  x ) )
104103mpteq2ia 4504 . 2  |-  ( x  e.  D  |->  ( 1  /  ( ( CC 
_D  ( exp  |`  ( log " D ) ) ) `  ( `' ( exp  |`  ( log " D ) ) `
 x ) ) ) )  =  ( x  e.  D  |->  ( 1  /  x ) )
10597, 98, 1043eqtr3i 2460 1  |-  ( CC 
_D  ( log  |`  D ) )  =  ( x  e.  D  |->  ( 1  /  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 188    /\ wa 371    = wceq 1438   T. wtru 1439    e. wcel 1869    =/= wne 2619    \ cdif 3434    i^i cin 3436    C_ wss 3437   {csn 3997   {cpr 3999    |-> cmpt 4480   `'ccnv 4850   dom cdm 4851   ran crn 4852    |` cres 4853   "cima 4854   Rel wrel 4856   Fun wfun 5593   -->wf 5595   -1-1->wf1 5596   -1-1-onto->wf1o 5598   ` cfv 5599  (class class class)co 6303   CCcc 9539   RRcr 9540   0cc0 9541   1c1 9542   -oocmnf 9675   -ucneg 9863    / cdiv 10271   (,]cioc 11638   Imcim 13155   expce 14107   picpi 14112   ↾t crest 15312   TopOpenctopn 15313  ℂfldccnfld 18963   Topctop 19909   intcnt 20024   -cn->ccncf 21900    _D cdv 22810   logclog 23496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-inf2 8150  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618  ax-pre-sup 9619  ax-addf 9620  ax-mulf 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-fal 1444  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-iin 4300  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-se 4811  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-isom 5608  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-of 6543  df-om 6705  df-1st 6805  df-2nd 6806  df-supp 6924  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-2o 7189  df-oadd 7192  df-er 7369  df-map 7480  df-pm 7481  df-ixp 7529  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-fsupp 7888  df-fi 7929  df-sup 7960  df-inf 7961  df-oi 8029  df-card 8376  df-cda 8600  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-div 10272  df-nn 10612  df-2 10670  df-3 10671  df-4 10672  df-5 10673  df-6 10674  df-7 10675  df-8 10676  df-9 10677  df-10 10678  df-n0 10872  df-z 10940  df-dec 11054  df-uz 11162  df-q 11267  df-rp 11305  df-xneg 11411  df-xadd 11412  df-xmul 11413  df-ioo 11641  df-ioc 11642  df-ico 11643  df-icc 11644  df-fz 11787  df-fzo 11918  df-fl 12029  df-mod 12098  df-seq 12215  df-exp 12274  df-fac 12461  df-bc 12489  df-hash 12517  df-shft 13124  df-cj 13156  df-re 13157  df-im 13158  df-sqrt 13292  df-abs 13293  df-limsup 13519  df-clim 13545  df-rlim 13546  df-sum 13746  df-ef 14114  df-sin 14116  df-cos 14117  df-tan 14118  df-pi 14119  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-mulr 15197  df-starv 15198  df-sca 15199  df-vsca 15200  df-ip 15201  df-tset 15202  df-ple 15203  df-ds 15205  df-unif 15206  df-hom 15207  df-cco 15208  df-rest 15314  df-topn 15315  df-0g 15333  df-gsum 15334  df-topgen 15335  df-pt 15336  df-prds 15339  df-xrs 15393  df-qtop 15399  df-imas 15400  df-xps 15403  df-mre 15485  df-mrc 15486  df-acs 15488  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-submnd 16576  df-mulg 16669  df-cntz 16964  df-cmn 17425  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-fbas 18960  df-fg 18961  df-cnfld 18964  df-top 19913  df-bases 19914  df-topon 19915  df-topsp 19916  df-cld 20026  df-ntr 20027  df-cls 20028  df-nei 20106  df-lp 20144  df-perf 20145  df-cn 20235  df-cnp 20236  df-haus 20323  df-cmp 20394  df-tx 20569  df-hmeo 20762  df-fil 20853  df-fm 20945  df-flim 20946  df-flf 20947  df-xms 21327  df-ms 21328  df-tms 21329  df-cncf 21902  df-limc 22813  df-dv 22814  df-log 23498
This theorem is referenced by:  dvlog2  23590  dvcncxp1  23675  dvatan  23853  lgamgulmlem2  23947  dvasin  31948
  Copyright terms: Public domain W3C validator