MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvle Structured version   Unicode version

Theorem dvle 22836
Description: If  A
( x ) ,  C ( x ) are differentiable functions and  A `  <_  C `
, then for  x  <_  y,  A ( y )  -  A ( x )  <_  C
( y )  -  C ( x ). (Contributed by Mario Carneiro, 16-May-2016.)
Hypotheses
Ref Expression
dvle.m  |-  ( ph  ->  M  e.  RR )
dvle.n  |-  ( ph  ->  N  e.  RR )
dvle.a  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  A )  e.  ( ( M [,] N
) -cn-> RR ) )
dvle.b  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) )  =  ( x  e.  ( M (,) N )  |->  B ) )
dvle.c  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  C )  e.  ( ( M [,] N
) -cn-> RR ) )
dvle.d  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  C ) )  =  ( x  e.  ( M (,) N )  |->  D ) )
dvle.f  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  B  <_  D )
dvle.x  |-  ( ph  ->  X  e.  ( M [,] N ) )
dvle.y  |-  ( ph  ->  Y  e.  ( M [,] N ) )
dvle.l  |-  ( ph  ->  X  <_  Y )
dvle.p  |-  ( x  =  X  ->  A  =  P )
dvle.q  |-  ( x  =  X  ->  C  =  Q )
dvle.r  |-  ( x  =  Y  ->  A  =  R )
dvle.s  |-  ( x  =  Y  ->  C  =  S )
Assertion
Ref Expression
dvle  |-  ( ph  ->  ( R  -  P
)  <_  ( S  -  Q ) )
Distinct variable groups:    x, M    x, N    x, P    x, Q    x, R    x, S    x, X    ph, x    x, Y
Allowed substitution hints:    A( x)    B( x)    C( x)    D( x)

Proof of Theorem dvle
StepHypRef Expression
1 dvle.y . . 3  |-  ( ph  ->  Y  e.  ( M [,] N ) )
2 dvle.a . . . . 5  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  A )  e.  ( ( M [,] N
) -cn-> RR ) )
3 cncff 21821 . . . . 5  |-  ( ( x  e.  ( M [,] N )  |->  A )  e.  ( ( M [,] N )
-cn-> RR )  ->  (
x  e.  ( M [,] N )  |->  A ) : ( M [,] N ) --> RR )
42, 3syl 17 . . . 4  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  A ) : ( M [,] N ) --> RR )
5 eqid 2429 . . . . 5  |-  ( x  e.  ( M [,] N )  |->  A )  =  ( x  e.  ( M [,] N
)  |->  A )
65fmpt 6058 . . . 4  |-  ( A. x  e.  ( M [,] N ) A  e.  RR  <->  ( x  e.  ( M [,] N
)  |->  A ) : ( M [,] N
) --> RR )
74, 6sylibr 215 . . 3  |-  ( ph  ->  A. x  e.  ( M [,] N ) A  e.  RR )
8 dvle.r . . . . 5  |-  ( x  =  Y  ->  A  =  R )
98eleq1d 2498 . . . 4  |-  ( x  =  Y  ->  ( A  e.  RR  <->  R  e.  RR ) )
109rspcv 3184 . . 3  |-  ( Y  e.  ( M [,] N )  ->  ( A. x  e.  ( M [,] N ) A  e.  RR  ->  R  e.  RR ) )
111, 7, 10sylc 62 . 2  |-  ( ph  ->  R  e.  RR )
12 dvle.c . . . . . 6  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  C )  e.  ( ( M [,] N
) -cn-> RR ) )
13 cncff 21821 . . . . . 6  |-  ( ( x  e.  ( M [,] N )  |->  C )  e.  ( ( M [,] N )
-cn-> RR )  ->  (
x  e.  ( M [,] N )  |->  C ) : ( M [,] N ) --> RR )
1412, 13syl 17 . . . . 5  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  C ) : ( M [,] N ) --> RR )
15 eqid 2429 . . . . . 6  |-  ( x  e.  ( M [,] N )  |->  C )  =  ( x  e.  ( M [,] N
)  |->  C )
1615fmpt 6058 . . . . 5  |-  ( A. x  e.  ( M [,] N ) C  e.  RR  <->  ( x  e.  ( M [,] N
)  |->  C ) : ( M [,] N
) --> RR )
1714, 16sylibr 215 . . . 4  |-  ( ph  ->  A. x  e.  ( M [,] N ) C  e.  RR )
18 dvle.s . . . . . 6  |-  ( x  =  Y  ->  C  =  S )
1918eleq1d 2498 . . . . 5  |-  ( x  =  Y  ->  ( C  e.  RR  <->  S  e.  RR ) )
2019rspcv 3184 . . . 4  |-  ( Y  e.  ( M [,] N )  ->  ( A. x  e.  ( M [,] N ) C  e.  RR  ->  S  e.  RR ) )
211, 17, 20sylc 62 . . 3  |-  ( ph  ->  S  e.  RR )
22 dvle.x . . . 4  |-  ( ph  ->  X  e.  ( M [,] N ) )
23 dvle.q . . . . . 6  |-  ( x  =  X  ->  C  =  Q )
2423eleq1d 2498 . . . . 5  |-  ( x  =  X  ->  ( C  e.  RR  <->  Q  e.  RR ) )
2524rspcv 3184 . . . 4  |-  ( X  e.  ( M [,] N )  ->  ( A. x  e.  ( M [,] N ) C  e.  RR  ->  Q  e.  RR ) )
2622, 17, 25sylc 62 . . 3  |-  ( ph  ->  Q  e.  RR )
2721, 26resubcld 10046 . 2  |-  ( ph  ->  ( S  -  Q
)  e.  RR )
28 dvle.p . . . . 5  |-  ( x  =  X  ->  A  =  P )
2928eleq1d 2498 . . . 4  |-  ( x  =  X  ->  ( A  e.  RR  <->  P  e.  RR ) )
3029rspcv 3184 . . 3  |-  ( X  e.  ( M [,] N )  ->  ( A. x  e.  ( M [,] N ) A  e.  RR  ->  P  e.  RR ) )
3122, 7, 30sylc 62 . 2  |-  ( ph  ->  P  e.  RR )
3211recnd 9668 . . . . 5  |-  ( ph  ->  R  e.  CC )
3326recnd 9668 . . . . . 6  |-  ( ph  ->  Q  e.  CC )
3421recnd 9668 . . . . . 6  |-  ( ph  ->  S  e.  CC )
3533, 34subcld 9985 . . . . 5  |-  ( ph  ->  ( Q  -  S
)  e.  CC )
3632, 35addcomd 9834 . . . 4  |-  ( ph  ->  ( R  +  ( Q  -  S ) )  =  ( ( Q  -  S )  +  R ) )
3732, 34, 33subsub2d 10014 . . . 4  |-  ( ph  ->  ( R  -  ( S  -  Q )
)  =  ( R  +  ( Q  -  S ) ) )
3833, 34, 32subsubd 10013 . . . 4  |-  ( ph  ->  ( Q  -  ( S  -  R )
)  =  ( ( Q  -  S )  +  R ) )
3936, 37, 383eqtr4d 2480 . . 3  |-  ( ph  ->  ( R  -  ( S  -  Q )
)  =  ( Q  -  ( S  -  R ) ) )
4021, 11resubcld 10046 . . . 4  |-  ( ph  ->  ( S  -  R
)  e.  RR )
41 dvle.m . . . . . 6  |-  ( ph  ->  M  e.  RR )
42 dvle.n . . . . . 6  |-  ( ph  ->  N  e.  RR )
43 eqid 2429 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
4443subcn 21794 . . . . . . 7  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
45 ax-resscn 9595 . . . . . . 7  |-  RR  C_  CC
46 resubcl 9937 . . . . . . 7  |-  ( ( C  e.  RR  /\  A  e.  RR )  ->  ( C  -  A
)  e.  RR )
4743, 44, 12, 2, 45, 46cncfmpt2ss 21843 . . . . . 6  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  ( C  -  A
) )  e.  ( ( M [,] N
) -cn-> RR ) )
48 ioossicc 11720 . . . . . . . . . . . . . . . . 17  |-  ( M (,) N )  C_  ( M [,] N )
4948sseli 3466 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( M (,) N )  ->  x  e.  ( M [,] N
) )
5017r19.21bi 2801 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  C  e.  RR )
5149, 50sylan2 476 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  C  e.  RR )
52 eqid 2429 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( M (,) N )  |->  C )  =  ( x  e.  ( M (,) N
)  |->  C )
5351, 52fmptd 6061 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  ( M (,) N ) 
|->  C ) : ( M (,) N ) --> RR )
54 ioossre 11696 . . . . . . . . . . . . . 14  |-  ( M (,) N )  C_  RR
55 dvfre 22782 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ( M (,) N ) 
|->  C ) : ( M (,) N ) --> RR  /\  ( M (,) N )  C_  RR )  ->  ( RR 
_D  ( x  e.  ( M (,) N
)  |->  C ) ) : dom  ( RR 
_D  ( x  e.  ( M (,) N
)  |->  C ) ) --> RR )
5653, 54, 55sylancl 666 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  C ) ) : dom  ( RR  _D  (
x  e.  ( M (,) N )  |->  C ) ) --> RR )
57 dvle.d . . . . . . . . . . . . . 14  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  C ) )  =  ( x  e.  ( M (,) N )  |->  D ) )
5857dmeqd 5057 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( RR  _D  ( x  e.  ( M (,) N )  |->  C ) )  =  dom  ( x  e.  ( M (,) N )  |->  D ) )
59 dvle.f . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  B  <_  D )
60 lerel 9697 . . . . . . . . . . . . . . . . . . 19  |-  Rel  <_
6160brrelex2i 4896 . . . . . . . . . . . . . . . . . 18  |-  ( B  <_  D  ->  D  e.  _V )
6259, 61syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  D  e.  _V )
6362ralrimiva 2846 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  ( M (,) N ) D  e.  _V )
64 dmmptg 5352 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  ( M (,) N ) D  e. 
_V  ->  dom  ( x  e.  ( M (,) N
)  |->  D )  =  ( M (,) N
) )
6563, 64syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( x  e.  ( M (,) N
)  |->  D )  =  ( M (,) N
) )
6658, 65eqtrd 2470 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( RR  _D  ( x  e.  ( M (,) N )  |->  C ) )  =  ( M (,) N ) )
6757, 66feq12d 5735 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( RR  _D  ( x  e.  ( M (,) N )  |->  C ) ) : dom  ( RR  _D  (
x  e.  ( M (,) N )  |->  C ) ) --> RR  <->  ( x  e.  ( M (,) N
)  |->  D ) : ( M (,) N
) --> RR ) )
6856, 67mpbid 213 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( M (,) N ) 
|->  D ) : ( M (,) N ) --> RR )
69 eqid 2429 . . . . . . . . . . . . 13  |-  ( x  e.  ( M (,) N )  |->  D )  =  ( x  e.  ( M (,) N
)  |->  D )
7069fmpt 6058 . . . . . . . . . . . 12  |-  ( A. x  e.  ( M (,) N ) D  e.  RR  <->  ( x  e.  ( M (,) N
)  |->  D ) : ( M (,) N
) --> RR )
7168, 70sylibr 215 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  ( M (,) N ) D  e.  RR )
7271r19.21bi 2801 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  D  e.  RR )
737r19.21bi 2801 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  A  e.  RR )
7449, 73sylan2 476 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  A  e.  RR )
75 eqid 2429 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( M (,) N )  |->  A )  =  ( x  e.  ( M (,) N
)  |->  A )
7674, 75fmptd 6061 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  ( M (,) N ) 
|->  A ) : ( M (,) N ) --> RR )
77 dvfre 22782 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ( M (,) N ) 
|->  A ) : ( M (,) N ) --> RR  /\  ( M (,) N )  C_  RR )  ->  ( RR 
_D  ( x  e.  ( M (,) N
)  |->  A ) ) : dom  ( RR 
_D  ( x  e.  ( M (,) N
)  |->  A ) ) --> RR )
7876, 54, 77sylancl 666 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) ) : dom  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) ) --> RR )
79 dvle.b . . . . . . . . . . . . . 14  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) )  =  ( x  e.  ( M (,) N )  |->  B ) )
8079dmeqd 5057 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( RR  _D  ( x  e.  ( M (,) N )  |->  A ) )  =  dom  ( x  e.  ( M (,) N )  |->  B ) )
8160brrelexi 4895 . . . . . . . . . . . . . . . . . 18  |-  ( B  <_  D  ->  B  e.  _V )
8259, 81syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  B  e.  _V )
8382ralrimiva 2846 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  ( M (,) N ) B  e.  _V )
84 dmmptg 5352 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  ( M (,) N ) B  e. 
_V  ->  dom  ( x  e.  ( M (,) N
)  |->  B )  =  ( M (,) N
) )
8583, 84syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( x  e.  ( M (,) N
)  |->  B )  =  ( M (,) N
) )
8680, 85eqtrd 2470 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( RR  _D  ( x  e.  ( M (,) N )  |->  A ) )  =  ( M (,) N ) )
8779, 86feq12d 5735 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( RR  _D  ( x  e.  ( M (,) N )  |->  A ) ) : dom  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) ) --> RR  <->  ( x  e.  ( M (,) N
)  |->  B ) : ( M (,) N
) --> RR ) )
8878, 87mpbid 213 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( M (,) N ) 
|->  B ) : ( M (,) N ) --> RR )
89 eqid 2429 . . . . . . . . . . . . 13  |-  ( x  e.  ( M (,) N )  |->  B )  =  ( x  e.  ( M (,) N
)  |->  B )
9089fmpt 6058 . . . . . . . . . . . 12  |-  ( A. x  e.  ( M (,) N ) B  e.  RR  <->  ( x  e.  ( M (,) N
)  |->  B ) : ( M (,) N
) --> RR )
9188, 90sylibr 215 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  ( M (,) N ) B  e.  RR )
9291r19.21bi 2801 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  B  e.  RR )
9372, 92resubcld 10046 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  ( D  -  B )  e.  RR )
9472, 92subge0d 10202 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  ( 0  <_  ( D  -  B )  <->  B  <_  D ) )
9559, 94mpbird 235 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  0  <_  ( D  -  B ) )
96 elrege0 11737 . . . . . . . . 9  |-  ( ( D  -  B )  e.  ( 0 [,) +oo )  <->  ( ( D  -  B )  e.  RR  /\  0  <_ 
( D  -  B
) ) )
9793, 95, 96sylanbrc 668 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  ( D  -  B )  e.  ( 0 [,) +oo )
)
98 eqid 2429 . . . . . . . 8  |-  ( x  e.  ( M (,) N )  |->  ( D  -  B ) )  =  ( x  e.  ( M (,) N
)  |->  ( D  -  B ) )
9997, 98fmptd 6061 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( M (,) N ) 
|->  ( D  -  B
) ) : ( M (,) N ) --> ( 0 [,) +oo ) )
10045a1i 11 . . . . . . . . . 10  |-  ( ph  ->  RR  C_  CC )
101 iccssre 11716 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M [,] N
)  C_  RR )
10241, 42, 101syl2anc 665 . . . . . . . . . 10  |-  ( ph  ->  ( M [,] N
)  C_  RR )
10350, 73resubcld 10046 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  ( C  -  A )  e.  RR )
104103recnd 9668 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  ( C  -  A )  e.  CC )
10543tgioo2 21732 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
106 iccntr 21750 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( M [,] N ) )  =  ( M (,) N
) )
10741, 42, 106syl2anc 665 . . . . . . . . . 10  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( M [,] N ) )  =  ( M (,) N
) )
108100, 102, 104, 105, 43, 107dvmptntr 22802 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M [,] N )  |->  ( C  -  A ) ) )  =  ( RR  _D  ( x  e.  ( M (,) N )  |->  ( C  -  A ) ) ) )
109 reelprrecn 9630 . . . . . . . . . . 11  |-  RR  e.  { RR ,  CC }
110109a1i 11 . . . . . . . . . 10  |-  ( ph  ->  RR  e.  { RR ,  CC } )
11150recnd 9668 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  C  e.  CC )
11249, 111sylan2 476 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  C  e.  CC )
11373recnd 9668 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  A  e.  CC )
11449, 113sylan2 476 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  A  e.  CC )
115110, 112, 62, 57, 114, 82, 79dvmptsub 22798 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  ( C  -  A ) ) )  =  ( x  e.  ( M (,) N )  |->  ( D  -  B ) ) )
116108, 115eqtrd 2470 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M [,] N )  |->  ( C  -  A ) ) )  =  ( x  e.  ( M (,) N )  |->  ( D  -  B ) ) )
117116feq1d 5732 . . . . . . 7  |-  ( ph  ->  ( ( RR  _D  ( x  e.  ( M [,] N )  |->  ( C  -  A ) ) ) : ( M (,) N ) --> ( 0 [,) +oo ) 
<->  ( x  e.  ( M (,) N ) 
|->  ( D  -  B
) ) : ( M (,) N ) --> ( 0 [,) +oo ) ) )
11899, 117mpbird 235 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M [,] N )  |->  ( C  -  A ) ) ) : ( M (,) N ) --> ( 0 [,) +oo ) )
119 dvle.l . . . . . 6  |-  ( ph  ->  X  <_  Y )
12041, 42, 47, 118, 22, 1, 119dvge0 22835 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( M [,] N
)  |->  ( C  -  A ) ) `  X )  <_  (
( x  e.  ( M [,] N ) 
|->  ( C  -  A
) ) `  Y
) )
12123, 28oveq12d 6323 . . . . . . 7  |-  ( x  =  X  ->  ( C  -  A )  =  ( Q  -  P ) )
122 eqid 2429 . . . . . . 7  |-  ( x  e.  ( M [,] N )  |->  ( C  -  A ) )  =  ( x  e.  ( M [,] N
)  |->  ( C  -  A ) )
123 ovex 6333 . . . . . . 7  |-  ( C  -  A )  e. 
_V
124121, 122, 123fvmpt3i 5969 . . . . . 6  |-  ( X  e.  ( M [,] N )  ->  (
( x  e.  ( M [,] N ) 
|->  ( C  -  A
) ) `  X
)  =  ( Q  -  P ) )
12522, 124syl 17 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( M [,] N
)  |->  ( C  -  A ) ) `  X )  =  ( Q  -  P ) )
12618, 8oveq12d 6323 . . . . . . 7  |-  ( x  =  Y  ->  ( C  -  A )  =  ( S  -  R ) )
127126, 122, 123fvmpt3i 5969 . . . . . 6  |-  ( Y  e.  ( M [,] N )  ->  (
( x  e.  ( M [,] N ) 
|->  ( C  -  A
) ) `  Y
)  =  ( S  -  R ) )
1281, 127syl 17 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( M [,] N
)  |->  ( C  -  A ) ) `  Y )  =  ( S  -  R ) )
129120, 125, 1283brtr3d 4455 . . . 4  |-  ( ph  ->  ( Q  -  P
)  <_  ( S  -  R ) )
13026, 31, 40, 129subled 10215 . . 3  |-  ( ph  ->  ( Q  -  ( S  -  R )
)  <_  P )
13139, 130eqbrtrd 4446 . 2  |-  ( ph  ->  ( R  -  ( S  -  Q )
)  <_  P )
13211, 27, 31, 131subled 10215 1  |-  ( ph  ->  ( R  -  P
)  <_  ( S  -  Q ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1870   A.wral 2782   _Vcvv 3087    C_ wss 3442   {cpr 4004   class class class wbr 4426    |-> cmpt 4484   dom cdm 4854   ran crn 4855   -->wf 5597   ` cfv 5601  (class class class)co 6305   CCcc 9536   RRcr 9537   0cc0 9538    + caddc 9541   +oocpnf 9671    <_ cle 9675    - cmin 9859   (,)cioo 11635   [,)cico 11637   [,]cicc 11638   TopOpenctopn 15279   topGenctg 15295  ℂfldccnfld 18905   intcnt 19963   -cn->ccncf 21804    _D cdv 22695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-map 7482  df-pm 7483  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-fi 7931  df-sup 7962  df-oi 8025  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ico 11641  df-icc 11642  df-fz 11783  df-fzo 11914  df-seq 12211  df-exp 12270  df-hash 12513  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-starv 15167  df-sca 15168  df-vsca 15169  df-ip 15170  df-tset 15171  df-ple 15172  df-ds 15174  df-unif 15175  df-hom 15176  df-cco 15177  df-rest 15280  df-topn 15281  df-0g 15299  df-gsum 15300  df-topgen 15301  df-pt 15302  df-prds 15305  df-xrs 15359  df-qtop 15364  df-imas 15365  df-xps 15367  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-submnd 16534  df-mulg 16627  df-cntz 16922  df-cmn 17367  df-psmet 18897  df-xmet 18898  df-met 18899  df-bl 18900  df-mopn 18901  df-fbas 18902  df-fg 18903  df-cnfld 18906  df-top 19852  df-bases 19853  df-topon 19854  df-topsp 19855  df-cld 19965  df-ntr 19966  df-cls 19967  df-nei 20045  df-lp 20083  df-perf 20084  df-cn 20174  df-cnp 20175  df-haus 20262  df-cmp 20333  df-tx 20508  df-hmeo 20701  df-fil 20792  df-fm 20884  df-flim 20885  df-flf 20886  df-xms 21266  df-ms 21267  df-tms 21268  df-cncf 21806  df-limc 22698  df-dv 22699
This theorem is referenced by:  dvfsumle  22850  dvfsumlem2  22856  loglesqrt  23563
  Copyright terms: Public domain W3C validator