Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvscaval Structured version   Visualization version   Unicode version

Theorem dvhvscaval 34738
Description: The scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Nov-2013.)
Hypothesis
Ref Expression
dvhvscaval.s  |-  .x.  =  ( s  e.  E ,  f  e.  ( T  X.  E )  |->  <.
( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
Assertion
Ref Expression
dvhvscaval  |-  ( ( U  e.  E  /\  F  e.  ( T  X.  E ) )  -> 
( U  .x.  F
)  =  <. ( U `  ( 1st `  F ) ) ,  ( U  o.  ( 2nd `  F ) )
>. )
Distinct variable groups:    f, s, E    T, s, f
Allowed substitution hints:    .x. ( f, s)    U( f, s)    F( f, s)

Proof of Theorem dvhvscaval
Dummy variables  t 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5878 . . 3  |-  ( t  =  U  ->  (
t `  ( 1st `  g ) )  =  ( U `  ( 1st `  g ) ) )
2 coeq1 4997 . . 3  |-  ( t  =  U  ->  (
t  o.  ( 2nd `  g ) )  =  ( U  o.  ( 2nd `  g ) ) )
31, 2opeq12d 4166 . 2  |-  ( t  =  U  ->  <. (
t `  ( 1st `  g ) ) ,  ( t  o.  ( 2nd `  g ) )
>.  =  <. ( U `
 ( 1st `  g
) ) ,  ( U  o.  ( 2nd `  g ) ) >.
)
4 fveq2 5879 . . . 4  |-  ( g  =  F  ->  ( 1st `  g )  =  ( 1st `  F
) )
54fveq2d 5883 . . 3  |-  ( g  =  F  ->  ( U `  ( 1st `  g ) )  =  ( U `  ( 1st `  F ) ) )
6 fveq2 5879 . . . 4  |-  ( g  =  F  ->  ( 2nd `  g )  =  ( 2nd `  F
) )
76coeq2d 5002 . . 3  |-  ( g  =  F  ->  ( U  o.  ( 2nd `  g ) )  =  ( U  o.  ( 2nd `  F ) ) )
85, 7opeq12d 4166 . 2  |-  ( g  =  F  ->  <. ( U `  ( 1st `  g ) ) ,  ( U  o.  ( 2nd `  g ) )
>.  =  <. ( U `
 ( 1st `  F
) ) ,  ( U  o.  ( 2nd `  F ) ) >.
)
9 dvhvscaval.s . . 3  |-  .x.  =  ( s  e.  E ,  f  e.  ( T  X.  E )  |->  <.
( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
109dvhvscacbv 34737 . 2  |-  .x.  =  ( t  e.  E ,  g  e.  ( T  X.  E )  |->  <.
( t `  ( 1st `  g ) ) ,  ( t  o.  ( 2nd `  g
) ) >. )
11 opex 4664 . 2  |-  <. ( U `  ( 1st `  F ) ) ,  ( U  o.  ( 2nd `  F ) )
>.  e.  _V
123, 8, 10, 11ovmpt2 6451 1  |-  ( ( U  e.  E  /\  F  e.  ( T  X.  E ) )  -> 
( U  .x.  F
)  =  <. ( U `  ( 1st `  F ) ) ,  ( U  o.  ( 2nd `  F ) )
>. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904   <.cop 3965    X. cxp 4837    o. ccom 4843   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310   1stc1st 6810   2ndc2nd 6811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-iota 5553  df-fun 5591  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313
This theorem is referenced by:  dvhvsca  34740  dvhopspN  34754
  Copyright terms: Public domain W3C validator