Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvaddval Structured version   Unicode version

Theorem dvhvaddval 34411
Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013.)
Hypothesis
Ref Expression
dvhvaddval.a  |-  .+  =  ( f  e.  ( T  X.  E ) ,  g  e.  ( T  X.  E ) 
|->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( ( 2nd `  f )  .+^  ( 2nd `  g ) ) >.
)
Assertion
Ref Expression
dvhvaddval  |-  ( ( F  e.  ( T  X.  E )  /\  G  e.  ( T  X.  E ) )  -> 
( F  .+  G
)  =  <. (
( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
Distinct variable groups:    f, g, E   
.+^ , f, g    T, f, g
Allowed substitution hints:    .+ ( f, g)    F( f, g)    G( f, g)

Proof of Theorem dvhvaddval
Dummy variables  h  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5872 . . . 4  |-  ( h  =  F  ->  ( 1st `  h )  =  ( 1st `  F
) )
21coeq1d 5007 . . 3  |-  ( h  =  F  ->  (
( 1st `  h
)  o.  ( 1st `  i ) )  =  ( ( 1st `  F
)  o.  ( 1st `  i ) ) )
3 fveq2 5872 . . . 4  |-  ( h  =  F  ->  ( 2nd `  h )  =  ( 2nd `  F
) )
43oveq1d 6311 . . 3  |-  ( h  =  F  ->  (
( 2nd `  h
)  .+^  ( 2nd `  i
) )  =  ( ( 2nd `  F
)  .+^  ( 2nd `  i
) ) )
52, 4opeq12d 4189 . 2  |-  ( h  =  F  ->  <. (
( 1st `  h
)  o.  ( 1st `  i ) ) ,  ( ( 2nd `  h
)  .+^  ( 2nd `  i
) ) >.  =  <. ( ( 1st `  F
)  o.  ( 1st `  i ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  i
) ) >. )
6 fveq2 5872 . . . 4  |-  ( i  =  G  ->  ( 1st `  i )  =  ( 1st `  G
) )
76coeq2d 5008 . . 3  |-  ( i  =  G  ->  (
( 1st `  F
)  o.  ( 1st `  i ) )  =  ( ( 1st `  F
)  o.  ( 1st `  G ) ) )
8 fveq2 5872 . . . 4  |-  ( i  =  G  ->  ( 2nd `  i )  =  ( 2nd `  G
) )
98oveq2d 6312 . . 3  |-  ( i  =  G  ->  (
( 2nd `  F
)  .+^  ( 2nd `  i
) )  =  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) )
107, 9opeq12d 4189 . 2  |-  ( i  =  G  ->  <. (
( 1st `  F
)  o.  ( 1st `  i ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  i
) ) >.  =  <. ( ( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
11 dvhvaddval.a . . 3  |-  .+  =  ( f  e.  ( T  X.  E ) ,  g  e.  ( T  X.  E ) 
|->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( ( 2nd `  f )  .+^  ( 2nd `  g ) ) >.
)
1211dvhvaddcbv 34410 . 2  |-  .+  =  ( h  e.  ( T  X.  E ) ,  i  e.  ( T  X.  E )  |->  <.
( ( 1st `  h
)  o.  ( 1st `  i ) ) ,  ( ( 2nd `  h
)  .+^  ( 2nd `  i
) ) >. )
13 opex 4677 . 2  |-  <. (
( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >.  e.  _V
145, 10, 12, 13ovmpt2 6437 1  |-  ( ( F  e.  ( T  X.  E )  /\  G  e.  ( T  X.  E ) )  -> 
( F  .+  G
)  =  <. (
( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1867   <.cop 3999    X. cxp 4843    o. ccom 4849   ` cfv 5592  (class class class)co 6296    |-> cmpt2 6298   1stc1st 6796   2ndc2nd 6797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pr 4652
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-rab 2782  df-v 3080  df-sbc 3297  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-br 4418  df-opab 4476  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-iota 5556  df-fun 5594  df-fv 5600  df-ov 6299  df-oprab 6300  df-mpt2 6301
This theorem is referenced by:  dvhvadd  34413  dvhopaddN  34435
  Copyright terms: Public domain W3C validator