Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvaddval Structured version   Unicode version

Theorem dvhvaddval 36104
Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013.)
Hypothesis
Ref Expression
dvhvaddval.a  |-  .+  =  ( f  e.  ( T  X.  E ) ,  g  e.  ( T  X.  E ) 
|->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( ( 2nd `  f )  .+^  ( 2nd `  g ) ) >.
)
Assertion
Ref Expression
dvhvaddval  |-  ( ( F  e.  ( T  X.  E )  /\  G  e.  ( T  X.  E ) )  -> 
( F  .+  G
)  =  <. (
( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
Distinct variable groups:    f, g, E   
.+^ , f, g    T, f, g
Allowed substitution hints:    .+ ( f, g)    F( f, g)    G( f, g)

Proof of Theorem dvhvaddval
Dummy variables  h  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5866 . . . 4  |-  ( h  =  F  ->  ( 1st `  h )  =  ( 1st `  F
) )
21coeq1d 5164 . . 3  |-  ( h  =  F  ->  (
( 1st `  h
)  o.  ( 1st `  i ) )  =  ( ( 1st `  F
)  o.  ( 1st `  i ) ) )
3 fveq2 5866 . . . 4  |-  ( h  =  F  ->  ( 2nd `  h )  =  ( 2nd `  F
) )
43oveq1d 6300 . . 3  |-  ( h  =  F  ->  (
( 2nd `  h
)  .+^  ( 2nd `  i
) )  =  ( ( 2nd `  F
)  .+^  ( 2nd `  i
) ) )
52, 4opeq12d 4221 . 2  |-  ( h  =  F  ->  <. (
( 1st `  h
)  o.  ( 1st `  i ) ) ,  ( ( 2nd `  h
)  .+^  ( 2nd `  i
) ) >.  =  <. ( ( 1st `  F
)  o.  ( 1st `  i ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  i
) ) >. )
6 fveq2 5866 . . . 4  |-  ( i  =  G  ->  ( 1st `  i )  =  ( 1st `  G
) )
76coeq2d 5165 . . 3  |-  ( i  =  G  ->  (
( 1st `  F
)  o.  ( 1st `  i ) )  =  ( ( 1st `  F
)  o.  ( 1st `  G ) ) )
8 fveq2 5866 . . . 4  |-  ( i  =  G  ->  ( 2nd `  i )  =  ( 2nd `  G
) )
98oveq2d 6301 . . 3  |-  ( i  =  G  ->  (
( 2nd `  F
)  .+^  ( 2nd `  i
) )  =  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) )
107, 9opeq12d 4221 . 2  |-  ( i  =  G  ->  <. (
( 1st `  F
)  o.  ( 1st `  i ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  i
) ) >.  =  <. ( ( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
11 dvhvaddval.a . . 3  |-  .+  =  ( f  e.  ( T  X.  E ) ,  g  e.  ( T  X.  E ) 
|->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( ( 2nd `  f )  .+^  ( 2nd `  g ) ) >.
)
1211dvhvaddcbv 36103 . 2  |-  .+  =  ( h  e.  ( T  X.  E ) ,  i  e.  ( T  X.  E )  |->  <.
( ( 1st `  h
)  o.  ( 1st `  i ) ) ,  ( ( 2nd `  h
)  .+^  ( 2nd `  i
) ) >. )
13 opex 4711 . 2  |-  <. (
( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >.  e.  _V
145, 10, 12, 13ovmpt2 6423 1  |-  ( ( F  e.  ( T  X.  E )  /\  G  e.  ( T  X.  E ) )  -> 
( F  .+  G
)  =  <. (
( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   <.cop 4033    X. cxp 4997    o. ccom 5003   ` cfv 5588  (class class class)co 6285    |-> cmpt2 6287   1stc1st 6783   2ndc2nd 6784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-iota 5551  df-fun 5590  df-fv 5596  df-ov 6288  df-oprab 6289  df-mpt2 6290
This theorem is referenced by:  dvhvadd  36106  dvhopaddN  36128
  Copyright terms: Public domain W3C validator