Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvaddass Structured version   Unicode version

Theorem dvhvaddass 35105
Description: Associativity of vector sum. (Contributed by NM, 31-Oct-2013.)
Hypotheses
Ref Expression
dvhvaddcl.h  |-  H  =  ( LHyp `  K
)
dvhvaddcl.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvhvaddcl.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvhvaddcl.u  |-  U  =  ( ( DVecH `  K
) `  W )
dvhvaddcl.d  |-  D  =  (Scalar `  U )
dvhvaddcl.p  |-  .+^  =  ( +g  `  D )
dvhvaddcl.a  |-  .+  =  ( +g  `  U )
Assertion
Ref Expression
dvhvaddass  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( F  .+  G )  .+  I
)  =  ( F 
.+  ( G  .+  I ) ) )

Proof of Theorem dvhvaddass
StepHypRef Expression
1 coass 5467 . . . 4  |-  ( ( ( 1st `  F
)  o.  ( 1st `  G ) )  o.  ( 1st `  I
) )  =  ( ( 1st `  F
)  o.  ( ( 1st `  G )  o.  ( 1st `  I
) ) )
2 dvhvaddcl.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
3 dvhvaddcl.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
4 dvhvaddcl.e . . . . . . . . 9  |-  E  =  ( ( TEndo `  K
) `  W )
5 dvhvaddcl.u . . . . . . . . 9  |-  U  =  ( ( DVecH `  K
) `  W )
6 dvhvaddcl.d . . . . . . . . 9  |-  D  =  (Scalar `  U )
7 dvhvaddcl.a . . . . . . . . 9  |-  .+  =  ( +g  `  U )
8 dvhvaddcl.p . . . . . . . . 9  |-  .+^  =  ( +g  `  D )
92, 3, 4, 5, 6, 7, 8dvhvadd 35100 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( F  .+  G
)  =  <. (
( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
1093adantr3 1149 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( F  .+  G
)  =  <. (
( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
1110fveq2d 5806 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 1st `  ( F  .+  G ) )  =  ( 1st `  <. ( ( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
)
12 fvex 5812 . . . . . . . 8  |-  ( 1st `  F )  e.  _V
13 fvex 5812 . . . . . . . 8  |-  ( 1st `  G )  e.  _V
1412, 13coex 6642 . . . . . . 7  |-  ( ( 1st `  F )  o.  ( 1st `  G
) )  e.  _V
15 ovex 6228 . . . . . . 7  |-  ( ( 2nd `  F ) 
.+^  ( 2nd `  G
) )  e.  _V
1614, 15op1st 6698 . . . . . 6  |-  ( 1st `  <. ( ( 1st `  F )  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F )  .+^  ( 2nd `  G ) ) >.
)  =  ( ( 1st `  F )  o.  ( 1st `  G
) )
1711, 16syl6eq 2511 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 1st `  ( F  .+  G ) )  =  ( ( 1st `  F )  o.  ( 1st `  G ) ) )
1817coeq1d 5112 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) )  =  ( ( ( 1st `  F
)  o.  ( 1st `  G ) )  o.  ( 1st `  I
) ) )
192, 3, 4, 5, 6, 7, 8dvhvadd 35100 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( G  .+  I
)  =  <. (
( 1st `  G
)  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G
)  .+^  ( 2nd `  I
) ) >. )
20193adantr1 1147 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( G  .+  I
)  =  <. (
( 1st `  G
)  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G
)  .+^  ( 2nd `  I
) ) >. )
2120fveq2d 5806 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 1st `  ( G  .+  I ) )  =  ( 1st `  <. ( ( 1st `  G
)  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G
)  .+^  ( 2nd `  I
) ) >. )
)
22 fvex 5812 . . . . . . . 8  |-  ( 1st `  I )  e.  _V
2313, 22coex 6642 . . . . . . 7  |-  ( ( 1st `  G )  o.  ( 1st `  I
) )  e.  _V
24 ovex 6228 . . . . . . 7  |-  ( ( 2nd `  G ) 
.+^  ( 2nd `  I
) )  e.  _V
2523, 24op1st 6698 . . . . . 6  |-  ( 1st `  <. ( ( 1st `  G )  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) >.
)  =  ( ( 1st `  G )  o.  ( 1st `  I
) )
2621, 25syl6eq 2511 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 1st `  ( G  .+  I ) )  =  ( ( 1st `  G )  o.  ( 1st `  I ) ) )
2726coeq2d 5113 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 1st `  F
)  o.  ( 1st `  ( G  .+  I
) ) )  =  ( ( 1st `  F
)  o.  ( ( 1st `  G )  o.  ( 1st `  I
) ) ) )
281, 18, 273eqtr4a 2521 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) )  =  ( ( 1st `  F
)  o.  ( 1st `  ( G  .+  I
) ) ) )
29 xp2nd 6720 . . . . . 6  |-  ( F  e.  ( T  X.  E )  ->  ( 2nd `  F )  e.  E )
30 xp2nd 6720 . . . . . 6  |-  ( G  e.  ( T  X.  E )  ->  ( 2nd `  G )  e.  E )
31 xp2nd 6720 . . . . . 6  |-  ( I  e.  ( T  X.  E )  ->  ( 2nd `  I )  e.  E )
3229, 30, 313anim123i 1173 . . . . 5  |-  ( ( F  e.  ( T  X.  E )  /\  G  e.  ( T  X.  E )  /\  I  e.  ( T  X.  E
) )  ->  (
( 2nd `  F
)  e.  E  /\  ( 2nd `  G )  e.  E  /\  ( 2nd `  I )  e.  E ) )
33 eqid 2454 . . . . . . . . . 10  |-  ( (
EDRing `  K ) `  W )  =  ( ( EDRing `  K ) `  W )
342, 33, 5, 6dvhsca 35090 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  =  ( (
EDRing `  K ) `  W ) )
352, 33erngdv 35000 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( EDRing `  K
) `  W )  e.  DivRing )
3634, 35eqeltrd 2542 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  DivRing )
37 drnggrp 16973 . . . . . . . 8  |-  ( D  e.  DivRing  ->  D  e.  Grp )
3836, 37syl 16 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Grp )
3938adantr 465 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  D  e.  Grp )
40 simpr1 994 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  F
)  e.  E )
41 eqid 2454 . . . . . . . . 9  |-  ( Base `  D )  =  (
Base `  D )
422, 4, 5, 6, 41dvhbase 35091 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  D
)  =  E )
4342adantr 465 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( Base `  D
)  =  E )
4440, 43eleqtrrd 2545 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  F
)  e.  ( Base `  D ) )
45 simpr2 995 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  G
)  e.  E )
4645, 43eleqtrrd 2545 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  G
)  e.  ( Base `  D ) )
47 simpr3 996 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  I
)  e.  E )
4847, 43eleqtrrd 2545 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  I
)  e.  ( Base `  D ) )
4941, 8grpass 15675 . . . . . 6  |-  ( ( D  e.  Grp  /\  ( ( 2nd `  F
)  e.  ( Base `  D )  /\  ( 2nd `  G )  e.  ( Base `  D
)  /\  ( 2nd `  I )  e.  (
Base `  D )
) )  ->  (
( ( 2nd `  F
)  .+^  ( 2nd `  G
) )  .+^  ( 2nd `  I ) )  =  ( ( 2nd `  F
)  .+^  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) ) )
5039, 44, 46, 48, 49syl13anc 1221 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( ( ( 2nd `  F ) 
.+^  ( 2nd `  G
) )  .+^  ( 2nd `  I ) )  =  ( ( 2nd `  F
)  .+^  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) ) )
5132, 50sylan2 474 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( ( 2nd `  F )  .+^  ( 2nd `  G ) )  .+^  ( 2nd `  I ) )  =  ( ( 2nd `  F ) 
.+^  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) ) )
5210fveq2d 5806 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 2nd `  ( F  .+  G ) )  =  ( 2nd `  <. ( ( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
)
5314, 15op2nd 6699 . . . . . 6  |-  ( 2nd `  <. ( ( 1st `  F )  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F )  .+^  ( 2nd `  G ) ) >.
)  =  ( ( 2nd `  F ) 
.+^  ( 2nd `  G
) )
5452, 53syl6eq 2511 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 2nd `  ( F  .+  G ) )  =  ( ( 2nd `  F )  .+^  ( 2nd `  G ) ) )
5554oveq1d 6218 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) )  =  ( ( ( 2nd `  F
)  .+^  ( 2nd `  G
) )  .+^  ( 2nd `  I ) ) )
5620fveq2d 5806 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 2nd `  ( G  .+  I ) )  =  ( 2nd `  <. ( ( 1st `  G
)  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G
)  .+^  ( 2nd `  I
) ) >. )
)
5723, 24op2nd 6699 . . . . . 6  |-  ( 2nd `  <. ( ( 1st `  G )  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) >.
)  =  ( ( 2nd `  G ) 
.+^  ( 2nd `  I
) )
5856, 57syl6eq 2511 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 2nd `  ( G  .+  I ) )  =  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) )
5958oveq2d 6219 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  F
)  .+^  ( 2nd `  ( G  .+  I ) ) )  =  ( ( 2nd `  F ) 
.+^  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) ) )
6051, 55, 593eqtr4d 2505 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) )  =  ( ( 2nd `  F
)  .+^  ( 2nd `  ( G  .+  I ) ) ) )
6128, 60opeq12d 4178 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  ->  <. ( ( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) ) ,  ( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) ) >.  =  <. ( ( 1st `  F
)  o.  ( 1st `  ( G  .+  I
) ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  ( G  .+  I ) ) ) >. )
62 simpl 457 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
632, 3, 4, 5, 6, 8, 7dvhvaddcl 35103 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( F  .+  G
)  e.  ( T  X.  E ) )
64633adantr3 1149 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( F  .+  G
)  e.  ( T  X.  E ) )
65 simpr3 996 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  ->  I  e.  ( T  X.  E ) )
662, 3, 4, 5, 6, 7, 8dvhvadd 35100 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F 
.+  G )  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( F  .+  G )  .+  I
)  =  <. (
( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) ) ,  ( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) ) >. )
6762, 64, 65, 66syl12anc 1217 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( F  .+  G )  .+  I
)  =  <. (
( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) ) ,  ( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) ) >. )
68 simpr1 994 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  ->  F  e.  ( T  X.  E ) )
692, 3, 4, 5, 6, 8, 7dvhvaddcl 35103 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( G  .+  I
)  e.  ( T  X.  E ) )
70693adantr1 1147 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( G  .+  I
)  e.  ( T  X.  E ) )
712, 3, 4, 5, 6, 7, 8dvhvadd 35100 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  ( G  .+  I )  e.  ( T  X.  E ) ) )  ->  ( F  .+  ( G  .+  I ) )  = 
<. ( ( 1st `  F
)  o.  ( 1st `  ( G  .+  I
) ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  ( G  .+  I ) ) ) >. )
7262, 68, 70, 71syl12anc 1217 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( F  .+  ( G  .+  I ) )  =  <. ( ( 1st `  F )  o.  ( 1st `  ( G  .+  I ) ) ) ,  ( ( 2nd `  F )  .+^  ( 2nd `  ( G  .+  I
) ) ) >.
)
7361, 67, 723eqtr4d 2505 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( F  .+  G )  .+  I
)  =  ( F 
.+  ( G  .+  I ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   <.cop 3994    X. cxp 4949    o. ccom 4955   ` cfv 5529  (class class class)co 6203   1stc1st 6688   2ndc2nd 6689   Basecbs 14296   +g cplusg 14361  Scalarcsca 14364   Grpcgrp 15533   DivRingcdr 16965   HLchlt 33358   LHypclh 33991   LTrncltrn 34108   TEndoctendo 34759   EDRingcedring 34760   DVecHcdvh 35086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474  ax-riotaBAD 32967
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-tpos 6858  df-undef 6905  df-recs 6945  df-rdg 6979  df-1o 7033  df-oadd 7037  df-er 7214  df-map 7329  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-nn 10438  df-2 10495  df-3 10496  df-4 10497  df-5 10498  df-6 10499  df-n0 10695  df-z 10762  df-uz 10977  df-fz 11559  df-struct 14298  df-ndx 14299  df-slot 14300  df-base 14301  df-sets 14302  df-ress 14303  df-plusg 14374  df-mulr 14375  df-sca 14377  df-vsca 14378  df-0g 14503  df-poset 15239  df-plt 15251  df-lub 15267  df-glb 15268  df-join 15269  df-meet 15270  df-p0 15332  df-p1 15333  df-lat 15339  df-clat 15401  df-mnd 15538  df-grp 15668  df-minusg 15669  df-mgp 16724  df-ur 16736  df-rng 16780  df-oppr 16848  df-dvdsr 16866  df-unit 16867  df-invr 16897  df-dvr 16908  df-drng 16967  df-oposet 33184  df-ol 33186  df-oml 33187  df-covers 33274  df-ats 33275  df-atl 33306  df-cvlat 33330  df-hlat 33359  df-llines 33505  df-lplanes 33506  df-lvols 33507  df-lines 33508  df-psubsp 33510  df-pmap 33511  df-padd 33803  df-lhyp 33995  df-laut 33996  df-ldil 34111  df-ltrn 34112  df-trl 34166  df-tendo 34762  df-edring 34764  df-dvech 35087
This theorem is referenced by:  dvhgrp  35115
  Copyright terms: Public domain W3C validator