Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvaddass Structured version   Unicode version

Theorem dvhvaddass 34430
Description: Associativity of vector sum. (Contributed by NM, 31-Oct-2013.)
Hypotheses
Ref Expression
dvhvaddcl.h  |-  H  =  ( LHyp `  K
)
dvhvaddcl.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvhvaddcl.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvhvaddcl.u  |-  U  =  ( ( DVecH `  K
) `  W )
dvhvaddcl.d  |-  D  =  (Scalar `  U )
dvhvaddcl.p  |-  .+^  =  ( +g  `  D )
dvhvaddcl.a  |-  .+  =  ( +g  `  U )
Assertion
Ref Expression
dvhvaddass  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( F  .+  G )  .+  I
)  =  ( F 
.+  ( G  .+  I ) ) )

Proof of Theorem dvhvaddass
StepHypRef Expression
1 coass 5353 . . . 4  |-  ( ( ( 1st `  F
)  o.  ( 1st `  G ) )  o.  ( 1st `  I
) )  =  ( ( 1st `  F
)  o.  ( ( 1st `  G )  o.  ( 1st `  I
) ) )
2 dvhvaddcl.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
3 dvhvaddcl.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
4 dvhvaddcl.e . . . . . . . . 9  |-  E  =  ( ( TEndo `  K
) `  W )
5 dvhvaddcl.u . . . . . . . . 9  |-  U  =  ( ( DVecH `  K
) `  W )
6 dvhvaddcl.d . . . . . . . . 9  |-  D  =  (Scalar `  U )
7 dvhvaddcl.a . . . . . . . . 9  |-  .+  =  ( +g  `  U )
8 dvhvaddcl.p . . . . . . . . 9  |-  .+^  =  ( +g  `  D )
92, 3, 4, 5, 6, 7, 8dvhvadd 34425 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( F  .+  G
)  =  <. (
( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
1093adantr3 1144 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( F  .+  G
)  =  <. (
( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
1110fveq2d 5692 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 1st `  ( F  .+  G ) )  =  ( 1st `  <. ( ( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
)
12 fvex 5698 . . . . . . . 8  |-  ( 1st `  F )  e.  _V
13 fvex 5698 . . . . . . . 8  |-  ( 1st `  G )  e.  _V
1412, 13coex 6528 . . . . . . 7  |-  ( ( 1st `  F )  o.  ( 1st `  G
) )  e.  _V
15 ovex 6115 . . . . . . 7  |-  ( ( 2nd `  F ) 
.+^  ( 2nd `  G
) )  e.  _V
1614, 15op1st 6584 . . . . . 6  |-  ( 1st `  <. ( ( 1st `  F )  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F )  .+^  ( 2nd `  G ) ) >.
)  =  ( ( 1st `  F )  o.  ( 1st `  G
) )
1711, 16syl6eq 2489 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 1st `  ( F  .+  G ) )  =  ( ( 1st `  F )  o.  ( 1st `  G ) ) )
1817coeq1d 4997 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) )  =  ( ( ( 1st `  F
)  o.  ( 1st `  G ) )  o.  ( 1st `  I
) ) )
192, 3, 4, 5, 6, 7, 8dvhvadd 34425 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( G  .+  I
)  =  <. (
( 1st `  G
)  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G
)  .+^  ( 2nd `  I
) ) >. )
20193adantr1 1142 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( G  .+  I
)  =  <. (
( 1st `  G
)  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G
)  .+^  ( 2nd `  I
) ) >. )
2120fveq2d 5692 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 1st `  ( G  .+  I ) )  =  ( 1st `  <. ( ( 1st `  G
)  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G
)  .+^  ( 2nd `  I
) ) >. )
)
22 fvex 5698 . . . . . . . 8  |-  ( 1st `  I )  e.  _V
2313, 22coex 6528 . . . . . . 7  |-  ( ( 1st `  G )  o.  ( 1st `  I
) )  e.  _V
24 ovex 6115 . . . . . . 7  |-  ( ( 2nd `  G ) 
.+^  ( 2nd `  I
) )  e.  _V
2523, 24op1st 6584 . . . . . 6  |-  ( 1st `  <. ( ( 1st `  G )  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) >.
)  =  ( ( 1st `  G )  o.  ( 1st `  I
) )
2621, 25syl6eq 2489 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 1st `  ( G  .+  I ) )  =  ( ( 1st `  G )  o.  ( 1st `  I ) ) )
2726coeq2d 4998 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 1st `  F
)  o.  ( 1st `  ( G  .+  I
) ) )  =  ( ( 1st `  F
)  o.  ( ( 1st `  G )  o.  ( 1st `  I
) ) ) )
281, 18, 273eqtr4a 2499 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) )  =  ( ( 1st `  F
)  o.  ( 1st `  ( G  .+  I
) ) ) )
29 xp2nd 6606 . . . . . 6  |-  ( F  e.  ( T  X.  E )  ->  ( 2nd `  F )  e.  E )
30 xp2nd 6606 . . . . . 6  |-  ( G  e.  ( T  X.  E )  ->  ( 2nd `  G )  e.  E )
31 xp2nd 6606 . . . . . 6  |-  ( I  e.  ( T  X.  E )  ->  ( 2nd `  I )  e.  E )
3229, 30, 313anim123i 1168 . . . . 5  |-  ( ( F  e.  ( T  X.  E )  /\  G  e.  ( T  X.  E )  /\  I  e.  ( T  X.  E
) )  ->  (
( 2nd `  F
)  e.  E  /\  ( 2nd `  G )  e.  E  /\  ( 2nd `  I )  e.  E ) )
33 eqid 2441 . . . . . . . . . 10  |-  ( (
EDRing `  K ) `  W )  =  ( ( EDRing `  K ) `  W )
342, 33, 5, 6dvhsca 34415 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  =  ( (
EDRing `  K ) `  W ) )
352, 33erngdv 34325 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( EDRing `  K
) `  W )  e.  DivRing )
3634, 35eqeltrd 2515 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  DivRing )
37 drnggrp 16820 . . . . . . . 8  |-  ( D  e.  DivRing  ->  D  e.  Grp )
3836, 37syl 16 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Grp )
3938adantr 462 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  D  e.  Grp )
40 simpr1 989 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  F
)  e.  E )
41 eqid 2441 . . . . . . . . 9  |-  ( Base `  D )  =  (
Base `  D )
422, 4, 5, 6, 41dvhbase 34416 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  D
)  =  E )
4342adantr 462 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( Base `  D
)  =  E )
4440, 43eleqtrrd 2518 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  F
)  e.  ( Base `  D ) )
45 simpr2 990 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  G
)  e.  E )
4645, 43eleqtrrd 2518 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  G
)  e.  ( Base `  D ) )
47 simpr3 991 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  I
)  e.  E )
4847, 43eleqtrrd 2518 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  I
)  e.  ( Base `  D ) )
4941, 8grpass 15545 . . . . . 6  |-  ( ( D  e.  Grp  /\  ( ( 2nd `  F
)  e.  ( Base `  D )  /\  ( 2nd `  G )  e.  ( Base `  D
)  /\  ( 2nd `  I )  e.  (
Base `  D )
) )  ->  (
( ( 2nd `  F
)  .+^  ( 2nd `  G
) )  .+^  ( 2nd `  I ) )  =  ( ( 2nd `  F
)  .+^  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) ) )
5039, 44, 46, 48, 49syl13anc 1215 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( ( ( 2nd `  F ) 
.+^  ( 2nd `  G
) )  .+^  ( 2nd `  I ) )  =  ( ( 2nd `  F
)  .+^  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) ) )
5132, 50sylan2 471 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( ( 2nd `  F )  .+^  ( 2nd `  G ) )  .+^  ( 2nd `  I ) )  =  ( ( 2nd `  F ) 
.+^  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) ) )
5210fveq2d 5692 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 2nd `  ( F  .+  G ) )  =  ( 2nd `  <. ( ( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
)
5314, 15op2nd 6585 . . . . . 6  |-  ( 2nd `  <. ( ( 1st `  F )  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F )  .+^  ( 2nd `  G ) ) >.
)  =  ( ( 2nd `  F ) 
.+^  ( 2nd `  G
) )
5452, 53syl6eq 2489 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 2nd `  ( F  .+  G ) )  =  ( ( 2nd `  F )  .+^  ( 2nd `  G ) ) )
5554oveq1d 6105 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) )  =  ( ( ( 2nd `  F
)  .+^  ( 2nd `  G
) )  .+^  ( 2nd `  I ) ) )
5620fveq2d 5692 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 2nd `  ( G  .+  I ) )  =  ( 2nd `  <. ( ( 1st `  G
)  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G
)  .+^  ( 2nd `  I
) ) >. )
)
5723, 24op2nd 6585 . . . . . 6  |-  ( 2nd `  <. ( ( 1st `  G )  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) >.
)  =  ( ( 2nd `  G ) 
.+^  ( 2nd `  I
) )
5856, 57syl6eq 2489 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 2nd `  ( G  .+  I ) )  =  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) )
5958oveq2d 6106 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  F
)  .+^  ( 2nd `  ( G  .+  I ) ) )  =  ( ( 2nd `  F ) 
.+^  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) ) )
6051, 55, 593eqtr4d 2483 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) )  =  ( ( 2nd `  F
)  .+^  ( 2nd `  ( G  .+  I ) ) ) )
6128, 60opeq12d 4064 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  ->  <. ( ( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) ) ,  ( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) ) >.  =  <. ( ( 1st `  F
)  o.  ( 1st `  ( G  .+  I
) ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  ( G  .+  I ) ) ) >. )
62 simpl 454 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
632, 3, 4, 5, 6, 8, 7dvhvaddcl 34428 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( F  .+  G
)  e.  ( T  X.  E ) )
64633adantr3 1144 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( F  .+  G
)  e.  ( T  X.  E ) )
65 simpr3 991 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  ->  I  e.  ( T  X.  E ) )
662, 3, 4, 5, 6, 7, 8dvhvadd 34425 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F 
.+  G )  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( F  .+  G )  .+  I
)  =  <. (
( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) ) ,  ( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) ) >. )
6762, 64, 65, 66syl12anc 1211 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( F  .+  G )  .+  I
)  =  <. (
( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) ) ,  ( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) ) >. )
68 simpr1 989 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  ->  F  e.  ( T  X.  E ) )
692, 3, 4, 5, 6, 8, 7dvhvaddcl 34428 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( G  .+  I
)  e.  ( T  X.  E ) )
70693adantr1 1142 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( G  .+  I
)  e.  ( T  X.  E ) )
712, 3, 4, 5, 6, 7, 8dvhvadd 34425 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  ( G  .+  I )  e.  ( T  X.  E ) ) )  ->  ( F  .+  ( G  .+  I ) )  = 
<. ( ( 1st `  F
)  o.  ( 1st `  ( G  .+  I
) ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  ( G  .+  I ) ) ) >. )
7262, 68, 70, 71syl12anc 1211 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( F  .+  ( G  .+  I ) )  =  <. ( ( 1st `  F )  o.  ( 1st `  ( G  .+  I ) ) ) ,  ( ( 2nd `  F )  .+^  ( 2nd `  ( G  .+  I
) ) ) >.
)
7361, 67, 723eqtr4d 2483 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( F  .+  G )  .+  I
)  =  ( F 
.+  ( G  .+  I ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   <.cop 3880    X. cxp 4834    o. ccom 4840   ` cfv 5415  (class class class)co 6090   1stc1st 6574   2ndc2nd 6575   Basecbs 14170   +g cplusg 14234  Scalarcsca 14237   Grpcgrp 15406   DivRingcdr 16812   HLchlt 32683   LHypclh 33316   LTrncltrn 33433   TEndoctendo 34084   EDRingcedring 34085   DVecHcdvh 34411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-riotaBAD 32292
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-tpos 6744  df-undef 6788  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-sca 14250  df-vsca 14251  df-0g 14376  df-poset 15112  df-plt 15124  df-lub 15140  df-glb 15141  df-join 15142  df-meet 15143  df-p0 15205  df-p1 15206  df-lat 15212  df-clat 15274  df-mnd 15411  df-grp 15538  df-minusg 15539  df-mgp 16582  df-ur 16594  df-rng 16637  df-oppr 16705  df-dvdsr 16723  df-unit 16724  df-invr 16754  df-dvr 16765  df-drng 16814  df-oposet 32509  df-ol 32511  df-oml 32512  df-covers 32599  df-ats 32600  df-atl 32631  df-cvlat 32655  df-hlat 32684  df-llines 32830  df-lplanes 32831  df-lvols 32832  df-lines 32833  df-psubsp 32835  df-pmap 32836  df-padd 33128  df-lhyp 33320  df-laut 33321  df-ldil 33436  df-ltrn 33437  df-trl 33491  df-tendo 34087  df-edring 34089  df-dvech 34412
This theorem is referenced by:  dvhgrp  34440
  Copyright terms: Public domain W3C validator