Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvaddass Structured version   Unicode version

Theorem dvhvaddass 34374
Description: Associativity of vector sum. (Contributed by NM, 31-Oct-2013.)
Hypotheses
Ref Expression
dvhvaddcl.h  |-  H  =  ( LHyp `  K
)
dvhvaddcl.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvhvaddcl.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvhvaddcl.u  |-  U  =  ( ( DVecH `  K
) `  W )
dvhvaddcl.d  |-  D  =  (Scalar `  U )
dvhvaddcl.p  |-  .+^  =  ( +g  `  D )
dvhvaddcl.a  |-  .+  =  ( +g  `  U )
Assertion
Ref Expression
dvhvaddass  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( F  .+  G )  .+  I
)  =  ( F 
.+  ( G  .+  I ) ) )

Proof of Theorem dvhvaddass
StepHypRef Expression
1 coass 5374 . . . 4  |-  ( ( ( 1st `  F
)  o.  ( 1st `  G ) )  o.  ( 1st `  I
) )  =  ( ( 1st `  F
)  o.  ( ( 1st `  G )  o.  ( 1st `  I
) ) )
2 dvhvaddcl.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
3 dvhvaddcl.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
4 dvhvaddcl.e . . . . . . . . 9  |-  E  =  ( ( TEndo `  K
) `  W )
5 dvhvaddcl.u . . . . . . . . 9  |-  U  =  ( ( DVecH `  K
) `  W )
6 dvhvaddcl.d . . . . . . . . 9  |-  D  =  (Scalar `  U )
7 dvhvaddcl.a . . . . . . . . 9  |-  .+  =  ( +g  `  U )
8 dvhvaddcl.p . . . . . . . . 9  |-  .+^  =  ( +g  `  D )
92, 3, 4, 5, 6, 7, 8dvhvadd 34369 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( F  .+  G
)  =  <. (
( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
1093adantr3 1166 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( F  .+  G
)  =  <. (
( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
1110fveq2d 5885 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 1st `  ( F  .+  G ) )  =  ( 1st `  <. ( ( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
)
12 fvex 5891 . . . . . . . 8  |-  ( 1st `  F )  e.  _V
13 fvex 5891 . . . . . . . 8  |-  ( 1st `  G )  e.  _V
1412, 13coex 6759 . . . . . . 7  |-  ( ( 1st `  F )  o.  ( 1st `  G
) )  e.  _V
15 ovex 6333 . . . . . . 7  |-  ( ( 2nd `  F ) 
.+^  ( 2nd `  G
) )  e.  _V
1614, 15op1st 6815 . . . . . 6  |-  ( 1st `  <. ( ( 1st `  F )  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F )  .+^  ( 2nd `  G ) ) >.
)  =  ( ( 1st `  F )  o.  ( 1st `  G
) )
1711, 16syl6eq 2486 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 1st `  ( F  .+  G ) )  =  ( ( 1st `  F )  o.  ( 1st `  G ) ) )
1817coeq1d 5016 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) )  =  ( ( ( 1st `  F
)  o.  ( 1st `  G ) )  o.  ( 1st `  I
) ) )
192, 3, 4, 5, 6, 7, 8dvhvadd 34369 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( G  .+  I
)  =  <. (
( 1st `  G
)  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G
)  .+^  ( 2nd `  I
) ) >. )
20193adantr1 1164 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( G  .+  I
)  =  <. (
( 1st `  G
)  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G
)  .+^  ( 2nd `  I
) ) >. )
2120fveq2d 5885 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 1st `  ( G  .+  I ) )  =  ( 1st `  <. ( ( 1st `  G
)  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G
)  .+^  ( 2nd `  I
) ) >. )
)
22 fvex 5891 . . . . . . . 8  |-  ( 1st `  I )  e.  _V
2313, 22coex 6759 . . . . . . 7  |-  ( ( 1st `  G )  o.  ( 1st `  I
) )  e.  _V
24 ovex 6333 . . . . . . 7  |-  ( ( 2nd `  G ) 
.+^  ( 2nd `  I
) )  e.  _V
2523, 24op1st 6815 . . . . . 6  |-  ( 1st `  <. ( ( 1st `  G )  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) >.
)  =  ( ( 1st `  G )  o.  ( 1st `  I
) )
2621, 25syl6eq 2486 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 1st `  ( G  .+  I ) )  =  ( ( 1st `  G )  o.  ( 1st `  I ) ) )
2726coeq2d 5017 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 1st `  F
)  o.  ( 1st `  ( G  .+  I
) ) )  =  ( ( 1st `  F
)  o.  ( ( 1st `  G )  o.  ( 1st `  I
) ) ) )
281, 18, 273eqtr4a 2496 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) )  =  ( ( 1st `  F
)  o.  ( 1st `  ( G  .+  I
) ) ) )
29 xp2nd 6838 . . . . . 6  |-  ( F  e.  ( T  X.  E )  ->  ( 2nd `  F )  e.  E )
30 xp2nd 6838 . . . . . 6  |-  ( G  e.  ( T  X.  E )  ->  ( 2nd `  G )  e.  E )
31 xp2nd 6838 . . . . . 6  |-  ( I  e.  ( T  X.  E )  ->  ( 2nd `  I )  e.  E )
3229, 30, 313anim123i 1190 . . . . 5  |-  ( ( F  e.  ( T  X.  E )  /\  G  e.  ( T  X.  E )  /\  I  e.  ( T  X.  E
) )  ->  (
( 2nd `  F
)  e.  E  /\  ( 2nd `  G )  e.  E  /\  ( 2nd `  I )  e.  E ) )
33 eqid 2429 . . . . . . . . . 10  |-  ( (
EDRing `  K ) `  W )  =  ( ( EDRing `  K ) `  W )
342, 33, 5, 6dvhsca 34359 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  =  ( (
EDRing `  K ) `  W ) )
352, 33erngdv 34269 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( EDRing `  K
) `  W )  e.  DivRing )
3634, 35eqeltrd 2517 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  DivRing )
37 drnggrp 17918 . . . . . . . 8  |-  ( D  e.  DivRing  ->  D  e.  Grp )
3836, 37syl 17 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Grp )
3938adantr 466 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  D  e.  Grp )
40 simpr1 1011 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  F
)  e.  E )
41 eqid 2429 . . . . . . . . 9  |-  ( Base `  D )  =  (
Base `  D )
422, 4, 5, 6, 41dvhbase 34360 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  D
)  =  E )
4342adantr 466 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( Base `  D
)  =  E )
4440, 43eleqtrrd 2520 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  F
)  e.  ( Base `  D ) )
45 simpr2 1012 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  G
)  e.  E )
4645, 43eleqtrrd 2520 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  G
)  e.  ( Base `  D ) )
47 simpr3 1013 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  I
)  e.  E )
4847, 43eleqtrrd 2520 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( 2nd `  I
)  e.  ( Base `  D ) )
4941, 8grpass 16631 . . . . . 6  |-  ( ( D  e.  Grp  /\  ( ( 2nd `  F
)  e.  ( Base `  D )  /\  ( 2nd `  G )  e.  ( Base `  D
)  /\  ( 2nd `  I )  e.  (
Base `  D )
) )  ->  (
( ( 2nd `  F
)  .+^  ( 2nd `  G
) )  .+^  ( 2nd `  I ) )  =  ( ( 2nd `  F
)  .+^  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) ) )
5039, 44, 46, 48, 49syl13anc 1266 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E  /\  ( 2nd `  I )  e.  E ) )  ->  ( ( ( 2nd `  F ) 
.+^  ( 2nd `  G
) )  .+^  ( 2nd `  I ) )  =  ( ( 2nd `  F
)  .+^  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) ) )
5132, 50sylan2 476 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( ( 2nd `  F )  .+^  ( 2nd `  G ) )  .+^  ( 2nd `  I ) )  =  ( ( 2nd `  F ) 
.+^  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) ) )
5210fveq2d 5885 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 2nd `  ( F  .+  G ) )  =  ( 2nd `  <. ( ( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
)
5314, 15op2nd 6816 . . . . . 6  |-  ( 2nd `  <. ( ( 1st `  F )  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F )  .+^  ( 2nd `  G ) ) >.
)  =  ( ( 2nd `  F ) 
.+^  ( 2nd `  G
) )
5452, 53syl6eq 2486 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 2nd `  ( F  .+  G ) )  =  ( ( 2nd `  F )  .+^  ( 2nd `  G ) ) )
5554oveq1d 6320 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) )  =  ( ( ( 2nd `  F
)  .+^  ( 2nd `  G
) )  .+^  ( 2nd `  I ) ) )
5620fveq2d 5885 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 2nd `  ( G  .+  I ) )  =  ( 2nd `  <. ( ( 1st `  G
)  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G
)  .+^  ( 2nd `  I
) ) >. )
)
5723, 24op2nd 6816 . . . . . 6  |-  ( 2nd `  <. ( ( 1st `  G )  o.  ( 1st `  I ) ) ,  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) >.
)  =  ( ( 2nd `  G ) 
.+^  ( 2nd `  I
) )
5856, 57syl6eq 2486 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( 2nd `  ( G  .+  I ) )  =  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) )
5958oveq2d 6321 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  F
)  .+^  ( 2nd `  ( G  .+  I ) ) )  =  ( ( 2nd `  F ) 
.+^  ( ( 2nd `  G )  .+^  ( 2nd `  I ) ) ) )
6051, 55, 593eqtr4d 2480 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) )  =  ( ( 2nd `  F
)  .+^  ( 2nd `  ( G  .+  I ) ) ) )
6128, 60opeq12d 4198 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  ->  <. ( ( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) ) ,  ( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) ) >.  =  <. ( ( 1st `  F
)  o.  ( 1st `  ( G  .+  I
) ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  ( G  .+  I ) ) ) >. )
62 simpl 458 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
632, 3, 4, 5, 6, 8, 7dvhvaddcl 34372 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( F  .+  G
)  e.  ( T  X.  E ) )
64633adantr3 1166 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( F  .+  G
)  e.  ( T  X.  E ) )
65 simpr3 1013 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  ->  I  e.  ( T  X.  E ) )
662, 3, 4, 5, 6, 7, 8dvhvadd 34369 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F 
.+  G )  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( F  .+  G )  .+  I
)  =  <. (
( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) ) ,  ( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) ) >. )
6762, 64, 65, 66syl12anc 1262 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( F  .+  G )  .+  I
)  =  <. (
( 1st `  ( F  .+  G ) )  o.  ( 1st `  I
) ) ,  ( ( 2nd `  ( F  .+  G ) ) 
.+^  ( 2nd `  I
) ) >. )
68 simpr1 1011 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  ->  F  e.  ( T  X.  E ) )
692, 3, 4, 5, 6, 8, 7dvhvaddcl 34372 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( G  .+  I
)  e.  ( T  X.  E ) )
70693adantr1 1164 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( G  .+  I
)  e.  ( T  X.  E ) )
712, 3, 4, 5, 6, 7, 8dvhvadd 34369 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  ( G  .+  I )  e.  ( T  X.  E ) ) )  ->  ( F  .+  ( G  .+  I ) )  = 
<. ( ( 1st `  F
)  o.  ( 1st `  ( G  .+  I
) ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  ( G  .+  I ) ) ) >. )
7262, 68, 70, 71syl12anc 1262 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( F  .+  ( G  .+  I ) )  =  <. ( ( 1st `  F )  o.  ( 1st `  ( G  .+  I ) ) ) ,  ( ( 2nd `  F )  .+^  ( 2nd `  ( G  .+  I
) ) ) >.
)
7361, 67, 723eqtr4d 2480 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
)  /\  I  e.  ( T  X.  E
) ) )  -> 
( ( F  .+  G )  .+  I
)  =  ( F 
.+  ( G  .+  I ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   <.cop 4008    X. cxp 4852    o. ccom 4858   ` cfv 5601  (class class class)co 6305   1stc1st 6805   2ndc2nd 6806   Basecbs 15084   +g cplusg 15152  Scalarcsca 15155   Grpcgrp 16620   DivRingcdr 17910   HLchlt 32625   LHypclh 33258   LTrncltrn 33375   TEndoctendo 34028   EDRingcedring 34029   DVecHcdvh 34355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-riotaBAD 32234
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-tpos 6981  df-undef 7028  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11783  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-sca 15168  df-vsca 15169  df-0g 15299  df-preset 16124  df-poset 16142  df-plt 16155  df-lub 16171  df-glb 16172  df-join 16173  df-meet 16174  df-p0 16236  df-p1 16237  df-lat 16243  df-clat 16305  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-grp 16624  df-minusg 16625  df-mgp 17659  df-ur 17671  df-ring 17717  df-oppr 17786  df-dvdsr 17804  df-unit 17805  df-invr 17835  df-dvr 17846  df-drng 17912  df-oposet 32451  df-ol 32453  df-oml 32454  df-covers 32541  df-ats 32542  df-atl 32573  df-cvlat 32597  df-hlat 32626  df-llines 32772  df-lplanes 32773  df-lvols 32774  df-lines 32775  df-psubsp 32777  df-pmap 32778  df-padd 33070  df-lhyp 33262  df-laut 33263  df-ldil 33378  df-ltrn 33379  df-trl 33434  df-tendo 34031  df-edring 34033  df-dvech 34356
This theorem is referenced by:  dvhgrp  34384
  Copyright terms: Public domain W3C validator