Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopellsm Structured version   Unicode version

Theorem dvhopellsm 34603
Description: Ordered pair membership in a subspace sum. (Contributed by NM, 12-Mar-2014.)
Hypotheses
Ref Expression
dvhopellsm.h  |-  H  =  ( LHyp `  K
)
dvhopellsm.u  |-  U  =  ( ( DVecH `  K
) `  W )
dvhopellsm.a  |-  .+  =  ( +g  `  U )
dvhopellsm.s  |-  S  =  ( LSubSp `  U )
dvhopellsm.p  |-  .(+)  =  (
LSSum `  U )
Assertion
Ref Expression
dvhopellsm  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( <. F ,  T >.  e.  ( X  .(+)  Y )  <->  E. x E. y E. z E. w ( ( <. x ,  y
>.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
Distinct variable groups:    x, w, y, z,  .+    w, F, x, y, z    x, H, y    x, K, y   
x, S, y    w, T, x, y, z    x, W, y    w, X, x, y, z    w, Y, x, y, z
Allowed substitution hints:    .(+) ( x, y,
z, w)    S( z, w)    U( x, y, z, w)    H( z, w)    K( z, w)    W( z, w)

Proof of Theorem dvhopellsm
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhopellsm.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
2 dvhopellsm.u . . . . . . 7  |-  U  =  ( ( DVecH `  K
) `  W )
3 id 23 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( K  e.  HL  /\  W  e.  H ) )
41, 2, 3dvhlmod 34596 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LMod )
543ad2ant1 1026 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  U  e.  LMod )
6 dvhopellsm.s . . . . . 6  |-  S  =  ( LSubSp `  U )
76lsssssubg 18168 . . . . 5  |-  ( U  e.  LMod  ->  S  C_  (SubGrp `  U ) )
85, 7syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  S  C_  (SubGrp `  U ) )
9 simp2 1006 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  X  e.  S )
108, 9sseldd 3465 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  X  e.  (SubGrp `  U ) )
11 simp3 1007 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Y  e.  S )
128, 11sseldd 3465 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Y  e.  (SubGrp `  U ) )
13 dvhopellsm.a . . . 4  |-  .+  =  ( +g  `  U )
14 dvhopellsm.p . . . 4  |-  .(+)  =  (
LSSum `  U )
1513, 14lsmelval 17288 . . 3  |-  ( ( X  e.  (SubGrp `  U )  /\  Y  e.  (SubGrp `  U )
)  ->  ( <. F ,  T >.  e.  ( X  .(+)  Y )  <->  E. u  e.  X  E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v ) ) )
1610, 12, 15syl2anc 665 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( <. F ,  T >.  e.  ( X  .(+)  Y )  <->  E. u  e.  X  E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v ) ) )
17 eqid 2422 . . . . . . . 8  |-  ( Base `  U )  =  (
Base `  U )
1817, 6lssss 18147 . . . . . . 7  |-  ( Y  e.  S  ->  Y  C_  ( Base `  U
) )
19183ad2ant3 1028 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Y  C_  ( Base `  U ) )
20 eqid 2422 . . . . . . . 8  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
21 eqid 2422 . . . . . . . 8  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
221, 20, 21, 2, 17dvhvbase 34573 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  U
)  =  ( ( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) )
23223ad2ant1 1026 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( Base `  U )  =  ( ( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) )
2419, 23sseqtrd 3500 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Y  C_  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) )
25 relxp 4957 . . . . 5  |-  Rel  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
)
26 relss 4937 . . . . 5  |-  ( Y 
C_  ( ( (
LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) )  -> 
( Rel  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) )  ->  Rel  Y ) )
2724, 25, 26mpisyl 22 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Rel  Y )
28 oveq2 6309 . . . . . 6  |-  ( v  =  <. z ,  w >.  ->  ( u  .+  v )  =  ( u  .+  <. z ,  w >. ) )
2928eqeq2d 2436 . . . . 5  |-  ( v  =  <. z ,  w >.  ->  ( <. F ,  T >.  =  ( u 
.+  v )  <->  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) ) )
3029exopxfr2 4994 . . . 4  |-  ( Rel 
Y  ->  ( E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v )  <->  E. z E. w (
<. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) ) ) )
3127, 30syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v )  <->  E. z E. w (
<. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) ) ) )
3231rexbidv 2939 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. u  e.  X  E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v )  <->  E. u  e.  X  E. z E. w (
<. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) ) ) )
3317, 6lssss 18147 . . . . . . 7  |-  ( X  e.  S  ->  X  C_  ( Base `  U
) )
34333ad2ant2 1027 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  X  C_  ( Base `  U ) )
3534, 23sseqtrd 3500 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  X  C_  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) )
36 relss 4937 . . . . 5  |-  ( X 
C_  ( ( (
LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) )  -> 
( Rel  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) )  ->  Rel  X ) )
3735, 25, 36mpisyl 22 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Rel  X )
38 oveq1 6308 . . . . . . . 8  |-  ( u  =  <. x ,  y
>.  ->  ( u  .+  <.
z ,  w >. )  =  ( <. x ,  y >.  .+  <. z ,  w >. )
)
3938eqeq2d 2436 . . . . . . 7  |-  ( u  =  <. x ,  y
>.  ->  ( <. F ,  T >.  =  ( u 
.+  <. z ,  w >. )  <->  <. F ,  T >.  =  ( <. x ,  y >.  .+  <. z ,  w >. )
) )
4039anbi2d 708 . . . . . 6  |-  ( u  =  <. x ,  y
>.  ->  ( ( <.
z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) )  <->  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <. x ,  y >.  .+  <. z ,  w >. )
) ) )
41402exbidv 1760 . . . . 5  |-  ( u  =  <. x ,  y
>.  ->  ( E. z E. w ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u  .+  <.
z ,  w >. ) )  <->  E. z E. w
( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) )
4241exopxfr2 4994 . . . 4  |-  ( Rel 
X  ->  ( E. u  e.  X  E. z E. w ( <.
z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) )  <->  E. x E. y ( <. x ,  y >.  e.  X  /\  E. z E. w
( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) ) )
4337, 42syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. u  e.  X  E. z E. w ( <.
z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) )  <->  E. x E. y ( <. x ,  y >.  e.  X  /\  E. z E. w
( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) ) )
44 19.42vv 1825 . . . . 5  |-  ( E. z E. w (
<. x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) )  <->  ( <. x ,  y >.  e.  X  /\  E. z E. w
( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) )
45 anass 653 . . . . . . . 8  |-  ( ( ( <. x ,  y
>.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) )  <->  ( <. x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) )
46452exbii 1713 . . . . . . 7  |-  ( E. z E. w ( ( <. x ,  y
>.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) )  <->  E. z E. w ( <. x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) )
4746bicomi 205 . . . . . 6  |-  ( E. z E. w (
<. x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) )  <->  E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) )
4847a1i 11 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. z E. w ( <.
x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) )  <->  E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
4944, 48syl5bbr 262 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( ( <. x ,  y >.  e.  X  /\  E. z E. w ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <. x ,  y >.  .+  <. z ,  w >. )
) )  <->  E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
50492exbidv 1760 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. x E. y ( <.
x ,  y >.  e.  X  /\  E. z E. w ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <. x ,  y >.  .+  <. z ,  w >. )
) )  <->  E. x E. y E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
5143, 50bitrd 256 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. u  e.  X  E. z E. w ( <.
z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) )  <->  E. x E. y E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
5216, 32, 513bitrd 282 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( <. F ,  T >.  e.  ( X  .(+)  Y )  <->  E. x E. y E. z E. w ( ( <. x ,  y
>.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437   E.wex 1659    e. wcel 1868   E.wrex 2776    C_ wss 3436   <.cop 4002    X. cxp 4847   Rel wrel 4854   ` cfv 5597  (class class class)co 6301   Basecbs 15108   +g cplusg 15177  SubGrpcsubg 16798   LSSumclsm 17273   LModclmod 18078   LSubSpclss 18142   HLchlt 32834   LHypclh 33467   LTrncltrn 33584   TEndoctendo 34237   DVecHcdvh 34564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-riotaBAD 32443
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-iin 4299  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-tpos 6977  df-undef 7024  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-oadd 7190  df-er 7367  df-map 7478  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11785  df-struct 15110  df-ndx 15111  df-slot 15112  df-base 15113  df-sets 15114  df-ress 15115  df-plusg 15190  df-mulr 15191  df-sca 15193  df-vsca 15194  df-0g 15327  df-preset 16160  df-poset 16178  df-plt 16191  df-lub 16207  df-glb 16208  df-join 16209  df-meet 16210  df-p0 16272  df-p1 16273  df-lat 16279  df-clat 16341  df-mgm 16475  df-sgrp 16514  df-mnd 16524  df-grp 16660  df-minusg 16661  df-sbg 16662  df-subg 16801  df-lsm 17275  df-mgp 17711  df-ur 17723  df-ring 17769  df-oppr 17838  df-dvdsr 17856  df-unit 17857  df-invr 17887  df-dvr 17898  df-drng 17964  df-lmod 18080  df-lss 18143  df-lvec 18313  df-oposet 32660  df-ol 32662  df-oml 32663  df-covers 32750  df-ats 32751  df-atl 32782  df-cvlat 32806  df-hlat 32835  df-llines 32981  df-lplanes 32982  df-lvols 32983  df-lines 32984  df-psubsp 32986  df-pmap 32987  df-padd 33279  df-lhyp 33471  df-laut 33472  df-ldil 33587  df-ltrn 33588  df-trl 33643  df-tendo 34240  df-edring 34242  df-dvech 34565
This theorem is referenced by:  diblsmopel  34657  dihopelvalcpre  34734  xihopellsmN  34740  dihopellsm  34741
  Copyright terms: Public domain W3C validator