Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopellsm Structured version   Unicode version

Theorem dvhopellsm 36131
Description: Ordered pair membership in a subspace sum. (Contributed by NM, 12-Mar-2014.)
Hypotheses
Ref Expression
dvhopellsm.h  |-  H  =  ( LHyp `  K
)
dvhopellsm.u  |-  U  =  ( ( DVecH `  K
) `  W )
dvhopellsm.a  |-  .+  =  ( +g  `  U )
dvhopellsm.s  |-  S  =  ( LSubSp `  U )
dvhopellsm.p  |-  .(+)  =  (
LSSum `  U )
Assertion
Ref Expression
dvhopellsm  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( <. F ,  T >.  e.  ( X  .(+)  Y )  <->  E. x E. y E. z E. w ( ( <. x ,  y
>.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
Distinct variable groups:    x, w, y, z,  .+    w, F, x, y, z    x, H, y    x, K, y   
x, S, y    w, T, x, y, z    x, W, y    w, X, x, y, z    w, Y, x, y, z
Allowed substitution hints:    .(+) ( x, y,
z, w)    S( z, w)    U( x, y, z, w)    H( z, w)    K( z, w)    W( z, w)

Proof of Theorem dvhopellsm
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhopellsm.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
2 dvhopellsm.u . . . . . . 7  |-  U  =  ( ( DVecH `  K
) `  W )
3 id 22 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( K  e.  HL  /\  W  e.  H ) )
41, 2, 3dvhlmod 36124 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LMod )
543ad2ant1 1017 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  U  e.  LMod )
6 dvhopellsm.s . . . . . 6  |-  S  =  ( LSubSp `  U )
76lsssssubg 17416 . . . . 5  |-  ( U  e.  LMod  ->  S  C_  (SubGrp `  U ) )
85, 7syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  S  C_  (SubGrp `  U ) )
9 simp2 997 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  X  e.  S )
108, 9sseldd 3505 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  X  e.  (SubGrp `  U ) )
11 simp3 998 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Y  e.  S )
128, 11sseldd 3505 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Y  e.  (SubGrp `  U ) )
13 dvhopellsm.a . . . 4  |-  .+  =  ( +g  `  U )
14 dvhopellsm.p . . . 4  |-  .(+)  =  (
LSSum `  U )
1513, 14lsmelval 16484 . . 3  |-  ( ( X  e.  (SubGrp `  U )  /\  Y  e.  (SubGrp `  U )
)  ->  ( <. F ,  T >.  e.  ( X  .(+)  Y )  <->  E. u  e.  X  E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v ) ) )
1610, 12, 15syl2anc 661 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( <. F ,  T >.  e.  ( X  .(+)  Y )  <->  E. u  e.  X  E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v ) ) )
17 eqid 2467 . . . . . . . 8  |-  ( Base `  U )  =  (
Base `  U )
1817, 6lssss 17395 . . . . . . 7  |-  ( Y  e.  S  ->  Y  C_  ( Base `  U
) )
19183ad2ant3 1019 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Y  C_  ( Base `  U ) )
20 eqid 2467 . . . . . . . 8  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
21 eqid 2467 . . . . . . . 8  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
221, 20, 21, 2, 17dvhvbase 36101 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  U
)  =  ( ( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) )
23223ad2ant1 1017 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( Base `  U )  =  ( ( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) )
2419, 23sseqtrd 3540 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Y  C_  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) )
25 relxp 5110 . . . . 5  |-  Rel  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
)
26 relss 5090 . . . . 5  |-  ( Y 
C_  ( ( (
LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) )  -> 
( Rel  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) )  ->  Rel  Y ) )
2724, 25, 26mpisyl 18 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Rel  Y )
28 oveq2 6293 . . . . . 6  |-  ( v  =  <. z ,  w >.  ->  ( u  .+  v )  =  ( u  .+  <. z ,  w >. ) )
2928eqeq2d 2481 . . . . 5  |-  ( v  =  <. z ,  w >.  ->  ( <. F ,  T >.  =  ( u 
.+  v )  <->  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) ) )
3029exopxfr2 5147 . . . 4  |-  ( Rel 
Y  ->  ( E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v )  <->  E. z E. w (
<. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) ) ) )
3127, 30syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v )  <->  E. z E. w (
<. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) ) ) )
3231rexbidv 2973 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. u  e.  X  E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v )  <->  E. u  e.  X  E. z E. w (
<. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) ) ) )
3317, 6lssss 17395 . . . . . . 7  |-  ( X  e.  S  ->  X  C_  ( Base `  U
) )
34333ad2ant2 1018 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  X  C_  ( Base `  U ) )
3534, 23sseqtrd 3540 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  X  C_  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) )
36 relss 5090 . . . . 5  |-  ( X 
C_  ( ( (
LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) )  -> 
( Rel  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) )  ->  Rel  X ) )
3735, 25, 36mpisyl 18 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Rel  X )
38 oveq1 6292 . . . . . . . 8  |-  ( u  =  <. x ,  y
>.  ->  ( u  .+  <.
z ,  w >. )  =  ( <. x ,  y >.  .+  <. z ,  w >. )
)
3938eqeq2d 2481 . . . . . . 7  |-  ( u  =  <. x ,  y
>.  ->  ( <. F ,  T >.  =  ( u 
.+  <. z ,  w >. )  <->  <. F ,  T >.  =  ( <. x ,  y >.  .+  <. z ,  w >. )
) )
4039anbi2d 703 . . . . . 6  |-  ( u  =  <. x ,  y
>.  ->  ( ( <.
z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) )  <->  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <. x ,  y >.  .+  <. z ,  w >. )
) ) )
41402exbidv 1692 . . . . 5  |-  ( u  =  <. x ,  y
>.  ->  ( E. z E. w ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u  .+  <.
z ,  w >. ) )  <->  E. z E. w
( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) )
4241exopxfr2 5147 . . . 4  |-  ( Rel 
X  ->  ( E. u  e.  X  E. z E. w ( <.
z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) )  <->  E. x E. y ( <. x ,  y >.  e.  X  /\  E. z E. w
( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) ) )
4337, 42syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. u  e.  X  E. z E. w ( <.
z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) )  <->  E. x E. y ( <. x ,  y >.  e.  X  /\  E. z E. w
( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) ) )
44 19.42vv 1951 . . . . 5  |-  ( E. z E. w (
<. x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) )  <->  ( <. x ,  y >.  e.  X  /\  E. z E. w
( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) )
45 anass 649 . . . . . . . 8  |-  ( ( ( <. x ,  y
>.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) )  <->  ( <. x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) )
46452exbii 1645 . . . . . . 7  |-  ( E. z E. w ( ( <. x ,  y
>.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) )  <->  E. z E. w ( <. x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) )
4746bicomi 202 . . . . . 6  |-  ( E. z E. w (
<. x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) )  <->  E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) )
4847a1i 11 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. z E. w ( <.
x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) )  <->  E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
4944, 48syl5bbr 259 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( ( <. x ,  y >.  e.  X  /\  E. z E. w ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <. x ,  y >.  .+  <. z ,  w >. )
) )  <->  E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
50492exbidv 1692 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. x E. y ( <.
x ,  y >.  e.  X  /\  E. z E. w ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <. x ,  y >.  .+  <. z ,  w >. )
) )  <->  E. x E. y E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
5143, 50bitrd 253 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. u  e.  X  E. z E. w ( <.
z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) )  <->  E. x E. y E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
5216, 32, 513bitrd 279 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( <. F ,  T >.  e.  ( X  .(+)  Y )  <->  E. x E. y E. z E. w ( ( <. x ,  y
>.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   E.wrex 2815    C_ wss 3476   <.cop 4033    X. cxp 4997   Rel wrel 5004   ` cfv 5588  (class class class)co 6285   Basecbs 14493   +g cplusg 14558  SubGrpcsubg 16009   LSSumclsm 16469   LModclmod 17324   LSubSpclss 17390   HLchlt 34364   LHypclh 34997   LTrncltrn 35114   TEndoctendo 35765   DVecHcdvh 36092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570  ax-riotaBAD 33973
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-tpos 6956  df-undef 7003  df-recs 7043  df-rdg 7077  df-1o 7131  df-oadd 7135  df-er 7312  df-map 7423  df-en 7518  df-dom 7519  df-sdom 7520  df-fin 7521  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-nn 10538  df-2 10595  df-3 10596  df-4 10597  df-5 10598  df-6 10599  df-n0 10797  df-z 10866  df-uz 11084  df-fz 11674  df-struct 14495  df-ndx 14496  df-slot 14497  df-base 14498  df-sets 14499  df-ress 14500  df-plusg 14571  df-mulr 14572  df-sca 14574  df-vsca 14575  df-0g 14700  df-poset 15436  df-plt 15448  df-lub 15464  df-glb 15465  df-join 15466  df-meet 15467  df-p0 15529  df-p1 15530  df-lat 15536  df-clat 15598  df-mnd 15735  df-grp 15871  df-minusg 15872  df-sbg 15873  df-subg 16012  df-lsm 16471  df-mgp 16956  df-ur 16968  df-rng 17014  df-oppr 17085  df-dvdsr 17103  df-unit 17104  df-invr 17134  df-dvr 17145  df-drng 17210  df-lmod 17326  df-lss 17391  df-lvec 17561  df-oposet 34190  df-ol 34192  df-oml 34193  df-covers 34280  df-ats 34281  df-atl 34312  df-cvlat 34336  df-hlat 34365  df-llines 34511  df-lplanes 34512  df-lvols 34513  df-lines 34514  df-psubsp 34516  df-pmap 34517  df-padd 34809  df-lhyp 35001  df-laut 35002  df-ldil 35117  df-ltrn 35118  df-trl 35172  df-tendo 35768  df-edring 35770  df-dvech 36093
This theorem is referenced by:  diblsmopel  36185  dihopelvalcpre  36262  xihopellsmN  36268  dihopellsm  36269
  Copyright terms: Public domain W3C validator