Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopN Structured version   Unicode version

Theorem dvhopN 34761
Description: Decompose a  DVecH vector expressed as an ordered pair into the sum of two components, the first from the translation group vector base of  DVecA and the other from the one-dimensional vector subspace  E. Part of Lemma M of [Crawley] p. 121, line 18. We represent their e, sigma, f by 
<. (  _I  |`  B ) ,  (  _I  |`  T )
>.,  U,  <. F ,  O >.. We swapped the order of vector sum (their juxtaposition i.e. composition) to show  <. F ,  O >. first. Note that  O and  (  _I  |`  T ) are the zero and one of the division ring  E, and  (  _I  |`  B ) is the zero of the translation group.  S is the scalar product. (Contributed by NM, 21-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvhop.b  |-  B  =  ( Base `  K
)
dvhop.h  |-  H  =  ( LHyp `  K
)
dvhop.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvhop.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvhop.p  |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( c  e.  T  |->  ( ( a `  c )  o.  (
b `  c )
) ) )
dvhop.a  |-  A  =  ( f  e.  ( T  X.  E ) ,  g  e.  ( T  X.  E ) 
|->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( ( 2nd `  f ) P ( 2nd `  g ) ) >. )
dvhop.s  |-  S  =  ( s  e.  E ,  f  e.  ( T  X.  E )  |->  <.
( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
dvhop.o  |-  O  =  ( c  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
dvhopN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  <. F ,  U >.  =  ( <. F ,  O >. A ( U S
<. (  _I  |`  B ) ,  (  _I  |`  T )
>. ) ) )
Distinct variable groups:    B, c    a, b, f, g, s, E    H, c    K, c    P, f, g    a, c, T, b, f, g, s    W, a, b, c
Allowed substitution hints:    A( f, g, s, a, b, c)    B( f, g, s, a, b)    P( s, a, b, c)    S( f, g, s, a, b, c)    U( f, g, s, a, b, c)    E( c)    F( f, g, s, a, b, c)    H( f, g, s, a, b)    K( f, g, s, a, b)    O( f, g, s, a, b, c)    W( f, g, s)

Proof of Theorem dvhopN
StepHypRef Expression
1 simprr 756 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  U  e.  E )
2 dvhop.b . . . . . . 7  |-  B  =  ( Base `  K
)
3 dvhop.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
4 dvhop.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
52, 3, 4idltrn 33794 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  T )
65adantr 465 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
(  _I  |`  B )  e.  T )
7 dvhop.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
83, 4, 7tendoidcl 34413 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  E )
98adantr 465 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
(  _I  |`  T )  e.  E )
10 dvhop.s . . . . . 6  |-  S  =  ( s  e.  E ,  f  e.  ( T  X.  E )  |->  <.
( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
1110dvhopspN 34760 . . . . 5  |-  ( ( U  e.  E  /\  ( (  _I  |`  B )  e.  T  /\  (  _I  |`  T )  e.  E ) )  -> 
( U S <. (  _I  |`  B ) ,  (  _I  |`  T )
>. )  =  <. ( U `  (  _I  |`  B ) ) ,  ( U  o.  (  _I  |`  T ) )
>. )
121, 6, 9, 11syl12anc 1216 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( U S <. (  _I  |`  B ) ,  (  _I  |`  T )
>. )  =  <. ( U `  (  _I  |`  B ) ) ,  ( U  o.  (  _I  |`  T ) )
>. )
132, 3, 7tendoid 34417 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( U `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
1413adantrl 715 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( U `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
153, 4, 7tendo1mulr 34415 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( U  o.  (  _I  |`  T ) )  =  U )
1615adantrl 715 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( U  o.  (  _I  |`  T ) )  =  U )
1714, 16opeq12d 4067 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  <. ( U `  (  _I  |`  B ) ) ,  ( U  o.  (  _I  |`  T ) ) >.  =  <. (  _I  |`  B ) ,  U >. )
1812, 17eqtrd 2475 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( U S <. (  _I  |`  B ) ,  (  _I  |`  T )
>. )  =  <. (  _I  |`  B ) ,  U >. )
1918oveq2d 6107 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( <. F ,  O >. A ( U S
<. (  _I  |`  B ) ,  (  _I  |`  T )
>. ) )  =  (
<. F ,  O >. A
<. (  _I  |`  B ) ,  U >. )
)
20 simprl 755 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  F  e.  T )
21 dvhop.o . . . . 5  |-  O  =  ( c  e.  T  |->  (  _I  |`  B ) )
222, 3, 4, 7, 21tendo0cl 34434 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
2322adantr 465 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  O  e.  E )
24 dvhop.a . . . 4  |-  A  =  ( f  e.  ( T  X.  E ) ,  g  e.  ( T  X.  E ) 
|->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( ( 2nd `  f ) P ( 2nd `  g ) ) >. )
2524dvhopaddN 34759 . . 3  |-  ( ( ( F  e.  T  /\  O  e.  E
)  /\  ( (  _I  |`  B )  e.  T  /\  U  e.  E ) )  -> 
( <. F ,  O >. A <. (  _I  |`  B ) ,  U >. )  =  <. ( F  o.  (  _I  |`  B ) ) ,  ( O P U ) >.
)
2620, 23, 6, 1, 25syl22anc 1219 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( <. F ,  O >. A <. (  _I  |`  B ) ,  U >. )  =  <. ( F  o.  (  _I  |`  B ) ) ,  ( O P U ) >.
)
272, 3, 4ltrn1o 33768 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
2827adantrr 716 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  F : B -1-1-onto-> B )
29 f1of 5641 . . . 4  |-  ( F : B -1-1-onto-> B  ->  F : B
--> B )
30 fcoi1 5585 . . . 4  |-  ( F : B --> B  -> 
( F  o.  (  _I  |`  B ) )  =  F )
3128, 29, 303syl 20 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( F  o.  (  _I  |`  B ) )  =  F )
32 dvhop.p . . . . 5  |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( c  e.  T  |->  ( ( a `  c )  o.  (
b `  c )
) ) )
332, 3, 4, 7, 21, 32tendo0pl 34435 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( O P U )  =  U )
3433adantrl 715 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  -> 
( O P U )  =  U )
3531, 34opeq12d 4067 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  <. ( F  o.  (  _I  |`  B ) ) ,  ( O P U ) >.  =  <. F ,  U >. )
3619, 26, 353eqtrrd 2480 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  U  e.  E ) )  ->  <. F ,  U >.  =  ( <. F ,  O >. A ( U S
<. (  _I  |`  B ) ,  (  _I  |`  T )
>. ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   <.cop 3883    e. cmpt 4350    _I cid 4631    X. cxp 4838    |` cres 4842    o. ccom 4844   -->wf 5414   -1-1-onto->wf1o 5417   ` cfv 5418  (class class class)co 6091    e. cmpt2 6093   1stc1st 6575   2ndc2nd 6576   Basecbs 14174   HLchlt 32995   LHypclh 33628   LTrncltrn 33745   TEndoctendo 34396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-riotaBAD 32604
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-1st 6577  df-2nd 6578  df-undef 6792  df-map 7216  df-poset 15116  df-plt 15128  df-lub 15144  df-glb 15145  df-join 15146  df-meet 15147  df-p0 15209  df-p1 15210  df-lat 15216  df-clat 15278  df-oposet 32821  df-ol 32823  df-oml 32824  df-covers 32911  df-ats 32912  df-atl 32943  df-cvlat 32967  df-hlat 32996  df-llines 33142  df-lplanes 33143  df-lvols 33144  df-lines 33145  df-psubsp 33147  df-pmap 33148  df-padd 33440  df-lhyp 33632  df-laut 33633  df-ldil 33748  df-ltrn 33749  df-trl 33803  df-tendo 34399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator