Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhgrp Structured version   Unicode version

Theorem dvhgrp 35904
Description: The full vector space  U constructed from a Hilbert lattice  K (given a fiducial hyperplane 
W) is a group. (Contributed by NM, 19-Oct-2013.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dvhgrp.b  |-  B  =  ( Base `  K
)
dvhgrp.h  |-  H  =  ( LHyp `  K
)
dvhgrp.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvhgrp.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvhgrp.u  |-  U  =  ( ( DVecH `  K
) `  W )
dvhgrp.d  |-  D  =  (Scalar `  U )
dvhgrp.p  |-  .+^  =  ( +g  `  D )
dvhgrp.a  |-  .+  =  ( +g  `  U )
dvhgrp.o  |-  .0.  =  ( 0g `  D )
dvhgrp.i  |-  I  =  ( invg `  D )
Assertion
Ref Expression
dvhgrp  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  Grp )

Proof of Theorem dvhgrp
Dummy variables  f 
g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhgrp.h . . . 4  |-  H  =  ( LHyp `  K
)
2 dvhgrp.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
3 dvhgrp.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
4 dvhgrp.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
5 eqid 2467 . . . 4  |-  ( Base `  U )  =  (
Base `  U )
61, 2, 3, 4, 5dvhvbase 35884 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  U
)  =  ( T  X.  E ) )
76eqcomd 2475 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( T  X.  E
)  =  ( Base `  U ) )
8 dvhgrp.a . . 3  |-  .+  =  ( +g  `  U )
98a1i 11 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .+  =  ( +g  `  U ) )
10 dvhgrp.d . . . 4  |-  D  =  (Scalar `  U )
11 dvhgrp.p . . . 4  |-  .+^  =  ( +g  `  D )
121, 2, 3, 4, 10, 11, 8dvhvaddcl 35892 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  ( T  X.  E
)  /\  g  e.  ( T  X.  E
) ) )  -> 
( f  .+  g
)  e.  ( T  X.  E ) )
13123impb 1192 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E )  /\  g  e.  ( T  X.  E ) )  ->  ( f  .+  g )  e.  ( T  X.  E ) )
141, 2, 3, 4, 10, 11, 8dvhvaddass 35894 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  ( T  X.  E
)  /\  g  e.  ( T  X.  E
)  /\  h  e.  ( T  X.  E
) ) )  -> 
( ( f  .+  g )  .+  h
)  =  ( f 
.+  ( g  .+  h ) ) )
15 dvhgrp.b . . . 4  |-  B  =  ( Base `  K
)
1615, 1, 2idltrn 34946 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  T )
17 eqid 2467 . . . . . . . 8  |-  ( (
EDRing `  K ) `  W )  =  ( ( EDRing `  K ) `  W )
181, 17, 4, 10dvhsca 35879 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  =  ( (
EDRing `  K ) `  W ) )
191, 17erngdv 35789 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( EDRing `  K
) `  W )  e.  DivRing )
2018, 19eqeltrd 2555 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  DivRing )
21 drnggrp 17187 . . . . . 6  |-  ( D  e.  DivRing  ->  D  e.  Grp )
2220, 21syl 16 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Grp )
23 eqid 2467 . . . . . 6  |-  ( Base `  D )  =  (
Base `  D )
24 dvhgrp.o . . . . . 6  |-  .0.  =  ( 0g `  D )
2523, 24grpidcl 15879 . . . . 5  |-  ( D  e.  Grp  ->  .0.  e.  ( Base `  D
) )
2622, 25syl 16 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .0.  e.  ( Base `  D ) )
271, 3, 4, 10, 23dvhbase 35880 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  D
)  =  E )
2826, 27eleqtrd 2557 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .0.  e.  E )
29 opelxpi 5030 . . 3  |-  ( ( (  _I  |`  B )  e.  T  /\  .0.  e.  E )  ->  <. (  _I  |`  B ) ,  .0.  >.  e.  ( T  X.  E ) )
3016, 28, 29syl2anc 661 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  -> 
<. (  _I  |`  B ) ,  .0.  >.  e.  ( T  X.  E ) )
31 simpl 457 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3216adantr 465 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  (  _I  |`  B )  e.  T
)
3328adantr 465 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  .0.  e.  E )
34 xp1st 6811 . . . . . 6  |-  ( f  e.  ( T  X.  E )  ->  ( 1st `  f )  e.  T )
3534adantl 466 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( 1st `  f )  e.  T
)
36 xp2nd 6812 . . . . . 6  |-  ( f  e.  ( T  X.  E )  ->  ( 2nd `  f )  e.  E )
3736adantl 466 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( 2nd `  f )  e.  E
)
381, 2, 3, 4, 10, 8, 11dvhopvadd 35890 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( (  _I  |`  B )  e.  T  /\  .0.  e.  E )  /\  ( ( 1st `  f )  e.  T  /\  ( 2nd `  f
)  e.  E ) )  ->  ( <. (  _I  |`  B ) ,  .0.  >.  .+  <. ( 1st `  f ) ,  ( 2nd `  f )
>. )  =  <. ( (  _I  |`  B )  o.  ( 1st `  f
) ) ,  (  .0.  .+^  ( 2nd `  f
) ) >. )
3931, 32, 33, 35, 37, 38syl122anc 1237 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( <. (  _I  |`  B ) ,  .0.  >.  .+  <. ( 1st `  f ) ,  ( 2nd `  f )
>. )  =  <. ( (  _I  |`  B )  o.  ( 1st `  f
) ) ,  (  .0.  .+^  ( 2nd `  f
) ) >. )
4015, 1, 2ltrn1o 34920 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( 1st `  f
)  e.  T )  ->  ( 1st `  f
) : B -1-1-onto-> B )
4135, 40syldan 470 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( 1st `  f ) : B -1-1-onto-> B
)
42 f1of 5814 . . . . . 6  |-  ( ( 1st `  f ) : B -1-1-onto-> B  ->  ( 1st `  f ) : B --> B )
43 fcoi2 5758 . . . . . 6  |-  ( ( 1st `  f ) : B --> B  -> 
( (  _I  |`  B )  o.  ( 1st `  f
) )  =  ( 1st `  f ) )
4441, 42, 433syl 20 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( (  _I  |`  B )  o.  ( 1st `  f
) )  =  ( 1st `  f ) )
4522adantr 465 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  D  e.  Grp )
4627adantr 465 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( Base `  D )  =  E )
4737, 46eleqtrrd 2558 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( 2nd `  f )  e.  (
Base `  D )
)
4823, 11, 24grplid 15881 . . . . . 6  |-  ( ( D  e.  Grp  /\  ( 2nd `  f )  e.  ( Base `  D
) )  ->  (  .0.  .+^  ( 2nd `  f
) )  =  ( 2nd `  f ) )
4945, 47, 48syl2anc 661 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  (  .0.  .+^  ( 2nd `  f
) )  =  ( 2nd `  f ) )
5044, 49opeq12d 4221 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  <. ( (  _I  |`  B )  o.  ( 1st `  f
) ) ,  (  .0.  .+^  ( 2nd `  f
) ) >.  =  <. ( 1st `  f ) ,  ( 2nd `  f
) >. )
5139, 50eqtrd 2508 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( <. (  _I  |`  B ) ,  .0.  >.  .+  <. ( 1st `  f ) ,  ( 2nd `  f )
>. )  =  <. ( 1st `  f ) ,  ( 2nd `  f
) >. )
52 1st2nd2 6818 . . . . 5  |-  ( f  e.  ( T  X.  E )  ->  f  =  <. ( 1st `  f
) ,  ( 2nd `  f ) >. )
5352adantl 466 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  f  =  <. ( 1st `  f
) ,  ( 2nd `  f ) >. )
5453oveq2d 6298 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( <. (  _I  |`  B ) ,  .0.  >.  .+  f )  =  ( <. (  _I  |`  B ) ,  .0.  >.  .+  <. ( 1st `  f ) ,  ( 2nd `  f )
>. ) )
5551, 54, 533eqtr4d 2518 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( <. (  _I  |`  B ) ,  .0.  >.  .+  f )  =  f )
561, 2ltrncnv 34942 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( 1st `  f
)  e.  T )  ->  `' ( 1st `  f )  e.  T
)
5735, 56syldan 470 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  `' ( 1st `  f )  e.  T )
58 dvhgrp.i . . . . . 6  |-  I  =  ( invg `  D )
5923, 58grpinvcl 15896 . . . . 5  |-  ( ( D  e.  Grp  /\  ( 2nd `  f )  e.  ( Base `  D
) )  ->  (
I `  ( 2nd `  f ) )  e.  ( Base `  D
) )
6045, 47, 59syl2anc 661 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( I `  ( 2nd `  f
) )  e.  (
Base `  D )
)
6160, 46eleqtrd 2557 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( I `  ( 2nd `  f
) )  e.  E
)
62 opelxpi 5030 . . 3  |-  ( ( `' ( 1st `  f
)  e.  T  /\  ( I `  ( 2nd `  f ) )  e.  E )  ->  <. `' ( 1st `  f
) ,  ( I `
 ( 2nd `  f
) ) >.  e.  ( T  X.  E ) )
6357, 61, 62syl2anc 661 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  <. `' ( 1st `  f ) ,  ( I `  ( 2nd `  f ) ) >.  e.  ( T  X.  E ) )
6453oveq2d 6298 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( <. `' ( 1st `  f
) ,  ( I `
 ( 2nd `  f
) ) >.  .+  f
)  =  ( <. `' ( 1st `  f
) ,  ( I `
 ( 2nd `  f
) ) >.  .+  <. ( 1st `  f ) ,  ( 2nd `  f
) >. ) )
651, 2, 3, 4, 10, 8, 11dvhopvadd 35890 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( `' ( 1st `  f )  e.  T  /\  (
I `  ( 2nd `  f ) )  e.  E )  /\  (
( 1st `  f
)  e.  T  /\  ( 2nd `  f )  e.  E ) )  ->  ( <. `' ( 1st `  f ) ,  ( I `  ( 2nd `  f ) ) >.  .+  <. ( 1st `  f ) ,  ( 2nd `  f
) >. )  =  <. ( `' ( 1st `  f
)  o.  ( 1st `  f ) ) ,  ( ( I `  ( 2nd `  f ) )  .+^  ( 2nd `  f ) ) >.
)
6631, 57, 61, 35, 37, 65syl122anc 1237 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( <. `' ( 1st `  f
) ,  ( I `
 ( 2nd `  f
) ) >.  .+  <. ( 1st `  f ) ,  ( 2nd `  f
) >. )  =  <. ( `' ( 1st `  f
)  o.  ( 1st `  f ) ) ,  ( ( I `  ( 2nd `  f ) )  .+^  ( 2nd `  f ) ) >.
)
67 f1ococnv1 5842 . . . . . 6  |-  ( ( 1st `  f ) : B -1-1-onto-> B  ->  ( `' ( 1st `  f )  o.  ( 1st `  f
) )  =  (  _I  |`  B )
)
6841, 67syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( `' ( 1st `  f )  o.  ( 1st `  f
) )  =  (  _I  |`  B )
)
6923, 11, 24, 58grplinv 15897 . . . . . 6  |-  ( ( D  e.  Grp  /\  ( 2nd `  f )  e.  ( Base `  D
) )  ->  (
( I `  ( 2nd `  f ) ) 
.+^  ( 2nd `  f
) )  =  .0.  )
7045, 47, 69syl2anc 661 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( (
I `  ( 2nd `  f ) )  .+^  ( 2nd `  f ) )  =  .0.  )
7168, 70opeq12d 4221 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  <. ( `' ( 1st `  f
)  o.  ( 1st `  f ) ) ,  ( ( I `  ( 2nd `  f ) )  .+^  ( 2nd `  f ) ) >.  =  <. (  _I  |`  B ) ,  .0.  >. )
7266, 71eqtrd 2508 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( <. `' ( 1st `  f
) ,  ( I `
 ( 2nd `  f
) ) >.  .+  <. ( 1st `  f ) ,  ( 2nd `  f
) >. )  =  <. (  _I  |`  B ) ,  .0.  >. )
7364, 72eqtrd 2508 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  ( T  X.  E ) )  ->  ( <. `' ( 1st `  f
) ,  ( I `
 ( 2nd `  f
) ) >.  .+  f
)  =  <. (  _I  |`  B ) ,  .0.  >. )
747, 9, 13, 14, 30, 55, 63, 73isgrpd 15876 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  Grp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   <.cop 4033    _I cid 4790    X. cxp 4997   `'ccnv 4998    |` cres 5001    o. ccom 5003   -->wf 5582   -1-1-onto->wf1o 5585   ` cfv 5586  (class class class)co 6282   1stc1st 6779   2ndc2nd 6780   Basecbs 14486   +g cplusg 14551  Scalarcsca 14554   0gc0g 14691   Grpcgrp 15723   invgcminusg 15724   DivRingcdr 17179   HLchlt 34147   LHypclh 34780   LTrncltrn 34897   TEndoctendo 35548   EDRingcedring 35549   DVecHcdvh 35875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-riotaBAD 33756
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-tpos 6952  df-undef 6999  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-n0 10792  df-z 10861  df-uz 11079  df-fz 11669  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-sca 14567  df-vsca 14568  df-0g 14693  df-poset 15429  df-plt 15441  df-lub 15457  df-glb 15458  df-join 15459  df-meet 15460  df-p0 15522  df-p1 15523  df-lat 15529  df-clat 15591  df-mnd 15728  df-grp 15858  df-minusg 15859  df-mgp 16932  df-ur 16944  df-rng 16988  df-oppr 17056  df-dvdsr 17074  df-unit 17075  df-invr 17105  df-dvr 17116  df-drng 17181  df-oposet 33973  df-ol 33975  df-oml 33976  df-covers 34063  df-ats 34064  df-atl 34095  df-cvlat 34119  df-hlat 34148  df-llines 34294  df-lplanes 34295  df-lvols 34296  df-lines 34297  df-psubsp 34299  df-pmap 34300  df-padd 34592  df-lhyp 34784  df-laut 34785  df-ldil 34900  df-ltrn 34901  df-trl 34955  df-tendo 35551  df-edring 35553  df-dvech 35876
This theorem is referenced by:  dvhlveclem  35905
  Copyright terms: Public domain W3C validator