Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh3dim3N Structured version   Unicode version

Theorem dvh3dim3N 34449
Description: There is a vector that is outside of 2 spans. TODO: decide to use either this or dvh3dim2 34448 everywhere. If this one is needed, make dvh3dim2 34448 into a lemma. (Contributed by NM, 21-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvh3dim.h  |-  H  =  ( LHyp `  K
)
dvh3dim.u  |-  U  =  ( ( DVecH `  K
) `  W )
dvh3dim.v  |-  V  =  ( Base `  U
)
dvh3dim.n  |-  N  =  ( LSpan `  U )
dvh3dim.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
dvh3dim.x  |-  ( ph  ->  X  e.  V )
dvh3dim.y  |-  ( ph  ->  Y  e.  V )
dvh3dim2.z  |-  ( ph  ->  Z  e.  V )
dvh3dim3.t  |-  ( ph  ->  T  e.  V )
Assertion
Ref Expression
dvh3dim3N  |-  ( ph  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
Distinct variable groups:    z, N    z, U    z, V    z, X    z, Y    z, Z    ph, z    z, T
Allowed substitution hints:    H( z)    K( z)    W( z)

Proof of Theorem dvh3dim3N
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 eqid 2402 . . . . 5  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
2 dvh3dim.n . . . . 5  |-  N  =  ( LSpan `  U )
3 dvh3dim.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
4 dvh3dim.u . . . . . . 7  |-  U  =  ( ( DVecH `  K
) `  W )
5 dvh3dim.k . . . . . . 7  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
63, 4, 5dvhlmod 34110 . . . . . 6  |-  ( ph  ->  U  e.  LMod )
76adantr 463 . . . . 5  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  U  e.  LMod )
8 dvh3dim.v . . . . . . 7  |-  V  =  ( Base `  U
)
9 dvh3dim2.z . . . . . . 7  |-  ( ph  ->  Z  e.  V )
10 dvh3dim3.t . . . . . . 7  |-  ( ph  ->  T  e.  V )
118, 1, 2, 6, 9, 10lspprcl 17942 . . . . . 6  |-  ( ph  ->  ( N `  { Z ,  T }
)  e.  ( LSubSp `  U ) )
1211adantr 463 . . . . 5  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  ( N `  { Z ,  T }
)  e.  ( LSubSp `  U ) )
13 simpr 459 . . . . 5  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  Y  e.  ( N `  { Z ,  T } ) )
148, 2, 6, 9, 10lspprid2 17962 . . . . . 6  |-  ( ph  ->  T  e.  ( N `
 { Z ,  T } ) )
1514adantr 463 . . . . 5  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  T  e.  ( N `  { Z ,  T } ) )
161, 2, 7, 12, 13, 15lspprss 17956 . . . 4  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  ( N `  { Y ,  T }
)  C_  ( N `  { Z ,  T } ) )
17 sspss 3541 . . . 4  |-  ( ( N `  { Y ,  T } )  C_  ( N `  { Z ,  T } )  <->  ( ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } )  \/  ( N `  { Y ,  T }
)  =  ( N `
 { Z ,  T } ) ) )
1816, 17sylib 196 . . 3  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  ( ( N `
 { Y ,  T } )  C.  ( N `  { Z ,  T } )  \/  ( N `  { Y ,  T }
)  =  ( N `
 { Z ,  T } ) ) )
193, 4, 5dvhlvec 34109 . . . . . . 7  |-  ( ph  ->  U  e.  LVec )
2019adantr 463 . . . . . 6  |-  ( (
ph  /\  ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } ) )  ->  U  e.  LVec )
21 dvh3dim.y . . . . . . . 8  |-  ( ph  ->  Y  e.  V )
228, 1, 2, 6, 21, 10lspprcl 17942 . . . . . . 7  |-  ( ph  ->  ( N `  { Y ,  T }
)  e.  ( LSubSp `  U ) )
2322adantr 463 . . . . . 6  |-  ( (
ph  /\  ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } ) )  ->  ( N `  { Y ,  T }
)  e.  ( LSubSp `  U ) )
249adantr 463 . . . . . 6  |-  ( (
ph  /\  ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } ) )  ->  Z  e.  V
)
2510adantr 463 . . . . . 6  |-  ( (
ph  /\  ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } ) )  ->  T  e.  V
)
26 simpr 459 . . . . . 6  |-  ( (
ph  /\  ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } ) )  ->  ( N `  { Y ,  T }
)  C.  ( N `  { Z ,  T } ) )
278, 1, 2, 20, 23, 24, 25, 26lspprat 18117 . . . . 5  |-  ( (
ph  /\  ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } ) )  ->  E. w  e.  V  ( N `  { Y ,  T } )  =  ( N `  {
w } ) )
2853ad2ant1 1018 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
29 simp2 998 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  w  e.  V )
30 dvh3dim.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  V )
31303ad2ant1 1018 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  X  e.  V )
3293ad2ant1 1018 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  Z  e.  V )
333, 4, 8, 2, 28, 29, 31, 32dvh3dim2 34448 . . . . . . . 8  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { w ,  X } )  /\  -.  z  e.  ( N `  { w ,  Z } ) ) )
3463ad2ant1 1018 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  U  e.  LMod )
351lsssssubg 17922 . . . . . . . . . . . . . . 15  |-  ( U  e.  LMod  ->  ( LSubSp `  U )  C_  (SubGrp `  U ) )
3634, 35syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( LSubSp `
 U )  C_  (SubGrp `  U ) )
378, 1, 2lspsncl 17941 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  (
LSubSp `  U ) )
386, 30, 37syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N `  { X } )  e.  (
LSubSp `  U ) )
39383ad2ant1 1018 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { X } )  e.  (
LSubSp `  U ) )
4036, 39sseldd 3442 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { X } )  e.  (SubGrp `  U ) )
418, 1, 2lspsncl 17941 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  LMod  /\  w  e.  V )  ->  ( N `  { w } )  e.  (
LSubSp `  U ) )
4234, 29, 41syl2anc 659 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { w } )  e.  (
LSubSp `  U ) )
4336, 42sseldd 3442 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { w } )  e.  (SubGrp `  U ) )
44 prssi 4127 . . . . . . . . . . . . . . . . 17  |-  ( ( Y  e.  V  /\  T  e.  V )  ->  { Y ,  T }  C_  V )
4521, 10, 44syl2anc 659 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  { Y ,  T }  C_  V )
46 snsspr1 4120 . . . . . . . . . . . . . . . . 17  |-  { Y }  C_  { Y ,  T }
4746a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  { Y }  C_  { Y ,  T }
)
488, 2lspss 17948 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  LMod  /\  { Y ,  T }  C_  V  /\  { Y }  C_  { Y ,  T } )  ->  ( N `  { Y } )  C_  ( N `  { Y ,  T } ) )
496, 45, 47, 48syl3anc 1230 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N `  { Y } )  C_  ( N `  { Y ,  T } ) )
50493ad2ant1 1018 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { Y } )  C_  ( N `  { Y ,  T } ) )
51 simp3 999 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { Y ,  T } )  =  ( N `  {
w } ) )
5250, 51sseqtrd 3477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { Y } )  C_  ( N `  { w } ) )
53 eqid 2402 . . . . . . . . . . . . . 14  |-  ( LSSum `  U )  =  (
LSSum `  U )
5453lsmless2 17002 . . . . . . . . . . . . 13  |-  ( ( ( N `  { X } )  e.  (SubGrp `  U )  /\  ( N `  { w } )  e.  (SubGrp `  U )  /\  ( N `  { Y } )  C_  ( N `  { w } ) )  -> 
( ( N `  { X } ) (
LSSum `  U ) ( N `  { Y } ) )  C_  ( ( N `  { X } ) (
LSSum `  U ) ( N `  { w } ) ) )
5540, 43, 52, 54syl3anc 1230 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  (
( N `  { X } ) ( LSSum `  U ) ( N `
 { Y }
) )  C_  (
( N `  { X } ) ( LSSum `  U ) ( N `
 { w }
) ) )
568, 2, 53, 6, 30, 21lsmpr 18053 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N `  { X ,  Y }
)  =  ( ( N `  { X } ) ( LSSum `  U ) ( N `
 { Y }
) ) )
57563ad2ant1 1018 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { X ,  Y } )  =  ( ( N `  { X } ) (
LSSum `  U ) ( N `  { Y } ) ) )
58 prcom 4049 . . . . . . . . . . . . . 14  |-  { w ,  X }  =  { X ,  w }
5958fveq2i 5851 . . . . . . . . . . . . 13  |-  ( N `
 { w ,  X } )  =  ( N `  { X ,  w }
)
608, 2, 53, 34, 31, 29lsmpr 18053 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { X ,  w } )  =  ( ( N `  { X } ) (
LSSum `  U ) ( N `  { w } ) ) )
6159, 60syl5eq 2455 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { w ,  X } )  =  ( ( N `  { X } ) (
LSSum `  U ) ( N `  { w } ) ) )
6255, 57, 613sstr4d 3484 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { X ,  Y } )  C_  ( N `  { w ,  X } ) )
6362ssneld 3443 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( -.  z  e.  ( N `  { w ,  X } )  ->  -.  z  e.  ( N `  { X ,  Y } ) ) )
648, 1, 2lspsncl 17941 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  LMod  /\  Z  e.  V )  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
656, 9, 64syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
66653ad2ant1 1018 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
6736, 66sseldd 3442 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { Z } )  e.  (SubGrp `  U ) )
68 snsspr2 4121 . . . . . . . . . . . . . . . . 17  |-  { T }  C_  { Y ,  T }
6968a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  { T }  C_  { Y ,  T }
)
708, 2lspss 17948 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  LMod  /\  { Y ,  T }  C_  V  /\  { T }  C_  { Y ,  T } )  ->  ( N `  { T } )  C_  ( N `  { Y ,  T } ) )
716, 45, 69, 70syl3anc 1230 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N `  { T } )  C_  ( N `  { Y ,  T } ) )
72713ad2ant1 1018 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { T } )  C_  ( N `  { Y ,  T } ) )
7372, 51sseqtrd 3477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { T } )  C_  ( N `  { w } ) )
7453lsmless2 17002 . . . . . . . . . . . . 13  |-  ( ( ( N `  { Z } )  e.  (SubGrp `  U )  /\  ( N `  { w } )  e.  (SubGrp `  U )  /\  ( N `  { T } )  C_  ( N `  { w } ) )  -> 
( ( N `  { Z } ) (
LSSum `  U ) ( N `  { T } ) )  C_  ( ( N `  { Z } ) (
LSSum `  U ) ( N `  { w } ) ) )
7567, 43, 73, 74syl3anc 1230 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  (
( N `  { Z } ) ( LSSum `  U ) ( N `
 { T }
) )  C_  (
( N `  { Z } ) ( LSSum `  U ) ( N `
 { w }
) ) )
768, 2, 53, 6, 9, 10lsmpr 18053 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N `  { Z ,  T }
)  =  ( ( N `  { Z } ) ( LSSum `  U ) ( N `
 { T }
) ) )
77763ad2ant1 1018 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { Z ,  T } )  =  ( ( N `  { Z } ) (
LSSum `  U ) ( N `  { T } ) ) )
78 prcom 4049 . . . . . . . . . . . . . 14  |-  { w ,  Z }  =  { Z ,  w }
7978fveq2i 5851 . . . . . . . . . . . . 13  |-  ( N `
 { w ,  Z } )  =  ( N `  { Z ,  w }
)
808, 2, 53, 34, 32, 29lsmpr 18053 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { Z ,  w } )  =  ( ( N `  { Z } ) (
LSSum `  U ) ( N `  { w } ) ) )
8179, 80syl5eq 2455 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { w ,  Z } )  =  ( ( N `  { Z } ) (
LSSum `  U ) ( N `  { w } ) ) )
8275, 77, 813sstr4d 3484 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( N `  { Z ,  T } )  C_  ( N `  { w ,  Z } ) )
8382ssneld 3443 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( -.  z  e.  ( N `  { w ,  Z } )  ->  -.  z  e.  ( N `  { Z ,  T } ) ) )
8463, 83anim12d 561 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  (
( -.  z  e.  ( N `  {
w ,  X }
)  /\  -.  z  e.  ( N `  {
w ,  Z }
) )  ->  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) ) )
8584reximdv 2877 . . . . . . . 8  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  ( E. z  e.  V  ( -.  z  e.  ( N `  { w ,  X } )  /\  -.  z  e.  ( N `  { w ,  Z } ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) ) )
8633, 85mpd 15 . . . . . . 7  |-  ( (
ph  /\  w  e.  V  /\  ( N `  { Y ,  T }
)  =  ( N `
 { w }
) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
8786rexlimdv3a 2897 . . . . . 6  |-  ( ph  ->  ( E. w  e.  V  ( N `  { Y ,  T }
)  =  ( N `
 { w }
)  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) ) )
8887adantr 463 . . . . 5  |-  ( (
ph  /\  ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } ) )  ->  ( E. w  e.  V  ( N `  { Y ,  T } )  =  ( N `  { w } )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) ) )
8927, 88mpd 15 . . . 4  |-  ( (
ph  /\  ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
903, 4, 8, 2, 5, 21, 30, 10dvh3dim2 34448 . . . . . 6  |-  ( ph  ->  E. z  e.  V  ( -.  z  e.  ( N `  { Y ,  X } )  /\  -.  z  e.  ( N `  { Y ,  T } ) ) )
9190adantr 463 . . . . 5  |-  ( (
ph  /\  ( N `  { Y ,  T } )  =  ( N `  { Z ,  T } ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { Y ,  X } )  /\  -.  z  e.  ( N `  { Y ,  T } ) ) )
92 simpr 459 . . . . . . 7  |-  ( (
ph  /\  ( N `  { Y ,  T } )  =  ( N `  { Z ,  T } ) )  ->  ( N `  { Y ,  T }
)  =  ( N `
 { Z ,  T } ) )
93 prcom 4049 . . . . . . . . . . . 12  |-  { Y ,  X }  =  { X ,  Y }
9493fveq2i 5851 . . . . . . . . . . 11  |-  ( N `
 { Y ,  X } )  =  ( N `  { X ,  Y } )
9594eleq2i 2480 . . . . . . . . . 10  |-  ( z  e.  ( N `  { Y ,  X }
)  <->  z  e.  ( N `  { X ,  Y } ) )
9695notbii 294 . . . . . . . . 9  |-  ( -.  z  e.  ( N `
 { Y ,  X } )  <->  -.  z  e.  ( N `  { X ,  Y }
) )
9796a1i 11 . . . . . . . 8  |-  ( ( N `  { Y ,  T } )  =  ( N `  { Z ,  T }
)  ->  ( -.  z  e.  ( N `  { Y ,  X } )  <->  -.  z  e.  ( N `  { X ,  Y }
) ) )
98 eleq2 2475 . . . . . . . . 9  |-  ( ( N `  { Y ,  T } )  =  ( N `  { Z ,  T }
)  ->  ( z  e.  ( N `  { Y ,  T }
)  <->  z  e.  ( N `  { Z ,  T } ) ) )
9998notbid 292 . . . . . . . 8  |-  ( ( N `  { Y ,  T } )  =  ( N `  { Z ,  T }
)  ->  ( -.  z  e.  ( N `  { Y ,  T } )  <->  -.  z  e.  ( N `  { Z ,  T }
) ) )
10097, 99anbi12d 709 . . . . . . 7  |-  ( ( N `  { Y ,  T } )  =  ( N `  { Z ,  T }
)  ->  ( ( -.  z  e.  ( N `  { Y ,  X } )  /\  -.  z  e.  ( N `  { Y ,  T } ) )  <-> 
( -.  z  e.  ( N `  { X ,  Y }
)  /\  -.  z  e.  ( N `  { Z ,  T }
) ) ) )
10192, 100syl 17 . . . . . 6  |-  ( (
ph  /\  ( N `  { Y ,  T } )  =  ( N `  { Z ,  T } ) )  ->  ( ( -.  z  e.  ( N `
 { Y ,  X } )  /\  -.  z  e.  ( N `  { Y ,  T } ) )  <->  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) ) )
102101rexbidv 2917 . . . . 5  |-  ( (
ph  /\  ( N `  { Y ,  T } )  =  ( N `  { Z ,  T } ) )  ->  ( E. z  e.  V  ( -.  z  e.  ( N `  { Y ,  X } )  /\  -.  z  e.  ( N `  { Y ,  T } ) )  <->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) ) )
10391, 102mpbid 210 . . . 4  |-  ( (
ph  /\  ( N `  { Y ,  T } )  =  ( N `  { Z ,  T } ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
10489, 103jaodan 786 . . 3  |-  ( (
ph  /\  ( ( N `  { Y ,  T } )  C.  ( N `  { Z ,  T } )  \/  ( N `  { Y ,  T }
)  =  ( N `
 { Z ,  T } ) ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
10518, 104syldan 468 . 2  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
1063, 4, 8, 2, 5, 21, 30, 10dvh3dim2 34448 . . . 4  |-  ( ph  ->  E. w  e.  V  ( -.  w  e.  ( N `  { Y ,  X } )  /\  -.  w  e.  ( N `  { Y ,  T } ) ) )
107106adantr 463 . . 3  |-  ( (
ph  /\  -.  Y  e.  ( N `  { Z ,  T }
) )  ->  E. w  e.  V  ( -.  w  e.  ( N `  { Y ,  X } )  /\  -.  w  e.  ( N `  { Y ,  T } ) ) )
108 simpl1l 1048 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  ph )
109108, 6syl 17 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  U  e.  LMod )
110 simpl2 1001 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  w  e.  V )
111108, 21syl 17 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  Y  e.  V )
112 eqid 2402 . . . . . . . 8  |-  ( +g  `  U )  =  ( +g  `  U )
1138, 112lmodvacl 17844 . . . . . . 7  |-  ( ( U  e.  LMod  /\  w  e.  V  /\  Y  e.  V )  ->  (
w ( +g  `  U
) Y )  e.  V )
114109, 110, 111, 113syl3anc 1230 . . . . . 6  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  -> 
( w ( +g  `  U ) Y )  e.  V )
1158, 1, 2, 6, 30, 21lspprcl 17942 . . . . . . . 8  |-  ( ph  ->  ( N `  { X ,  Y }
)  e.  ( LSubSp `  U ) )
116108, 115syl 17 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  -> 
( N `  { X ,  Y }
)  e.  ( LSubSp `  U ) )
1178, 2, 6, 30, 21lspprid2 17962 . . . . . . . 8  |-  ( ph  ->  Y  e.  ( N `
 { X ,  Y } ) )
118108, 117syl 17 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  Y  e.  ( N `  { X ,  Y } ) )
119 simpl3l 1052 . . . . . . . 8  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  -.  w  e.  ( N `  { Y ,  X } ) )
12094eleq2i 2480 . . . . . . . 8  |-  ( w  e.  ( N `  { Y ,  X }
)  <->  w  e.  ( N `  { X ,  Y } ) )
121119, 120sylnib 302 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  -.  w  e.  ( N `  { X ,  Y } ) )
1228, 112, 1, 109, 116, 118, 110, 121lssvancl2 17910 . . . . . 6  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  -.  ( w ( +g  `  U ) Y )  e.  ( N `  { X ,  Y }
) )
123108, 11syl 17 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  -> 
( N `  { Z ,  T }
)  e.  ( LSubSp `  U ) )
124 simpr 459 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  w  e.  ( N `  { Z ,  T } ) )
125 simpl1r 1049 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  -.  Y  e.  ( N `  { Z ,  T } ) )
1268, 112, 1, 109, 123, 124, 111, 125lssvancl1 17909 . . . . . 6  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  -.  ( w ( +g  `  U ) Y )  e.  ( N `  { Z ,  T }
) )
127 eleq1 2474 . . . . . . . . 9  |-  ( z  =  ( w ( +g  `  U ) Y )  ->  (
z  e.  ( N `
 { X ,  Y } )  <->  ( w
( +g  `  U ) Y )  e.  ( N `  { X ,  Y } ) ) )
128127notbid 292 . . . . . . . 8  |-  ( z  =  ( w ( +g  `  U ) Y )  ->  ( -.  z  e.  ( N `  { X ,  Y } )  <->  -.  (
w ( +g  `  U
) Y )  e.  ( N `  { X ,  Y }
) ) )
129 eleq1 2474 . . . . . . . . 9  |-  ( z  =  ( w ( +g  `  U ) Y )  ->  (
z  e.  ( N `
 { Z ,  T } )  <->  ( w
( +g  `  U ) Y )  e.  ( N `  { Z ,  T } ) ) )
130129notbid 292 . . . . . . . 8  |-  ( z  =  ( w ( +g  `  U ) Y )  ->  ( -.  z  e.  ( N `  { Z ,  T } )  <->  -.  (
w ( +g  `  U
) Y )  e.  ( N `  { Z ,  T }
) ) )
131128, 130anbi12d 709 . . . . . . 7  |-  ( z  =  ( w ( +g  `  U ) Y )  ->  (
( -.  z  e.  ( N `  { X ,  Y }
)  /\  -.  z  e.  ( N `  { Z ,  T }
) )  <->  ( -.  ( w ( +g  `  U ) Y )  e.  ( N `  { X ,  Y }
)  /\  -.  (
w ( +g  `  U
) Y )  e.  ( N `  { Z ,  T }
) ) ) )
132131rspcev 3159 . . . . . 6  |-  ( ( ( w ( +g  `  U ) Y )  e.  V  /\  ( -.  ( w ( +g  `  U ) Y )  e.  ( N `  { X ,  Y }
)  /\  -.  (
w ( +g  `  U
) Y )  e.  ( N `  { Z ,  T }
) ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
133114, 122, 126, 132syl12anc 1228 . . . . 5  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  w  e.  ( N `  { Z ,  T } ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
134 simpl2 1001 . . . . . 6  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  -.  w  e.  ( N `  { Z ,  T } ) )  ->  w  e.  V
)
135 simpl3l 1052 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  -.  w  e.  ( N `  { Z ,  T } ) )  ->  -.  w  e.  ( N `  { Y ,  X } ) )
136135, 120sylnib 302 . . . . . 6  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  -.  w  e.  ( N `  { Z ,  T } ) )  ->  -.  w  e.  ( N `  { X ,  Y } ) )
137 simpr 459 . . . . . 6  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  -.  w  e.  ( N `  { Z ,  T } ) )  ->  -.  w  e.  ( N `  { Z ,  T } ) )
138 eleq1 2474 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  e.  ( N `
 { X ,  Y } )  <->  w  e.  ( N `  { X ,  Y } ) ) )
139138notbid 292 . . . . . . . 8  |-  ( z  =  w  ->  ( -.  z  e.  ( N `  { X ,  Y } )  <->  -.  w  e.  ( N `  { X ,  Y }
) ) )
140 eleq1 2474 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  e.  ( N `
 { Z ,  T } )  <->  w  e.  ( N `  { Z ,  T } ) ) )
141140notbid 292 . . . . . . . 8  |-  ( z  =  w  ->  ( -.  z  e.  ( N `  { Z ,  T } )  <->  -.  w  e.  ( N `  { Z ,  T }
) ) )
142139, 141anbi12d 709 . . . . . . 7  |-  ( z  =  w  ->  (
( -.  z  e.  ( N `  { X ,  Y }
)  /\  -.  z  e.  ( N `  { Z ,  T }
) )  <->  ( -.  w  e.  ( N `  { X ,  Y } )  /\  -.  w  e.  ( N `  { Z ,  T } ) ) ) )
143142rspcev 3159 . . . . . 6  |-  ( ( w  e.  V  /\  ( -.  w  e.  ( N `  { X ,  Y } )  /\  -.  w  e.  ( N `  { Z ,  T } ) ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
144134, 136, 137, 143syl12anc 1228 . . . . 5  |-  ( ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X }
)  /\  -.  w  e.  ( N `  { Y ,  T }
) ) )  /\  -.  w  e.  ( N `  { Z ,  T } ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
145133, 144pm2.61dan 792 . . . 4  |-  ( ( ( ph  /\  -.  Y  e.  ( N `  { Z ,  T } ) )  /\  w  e.  V  /\  ( -.  w  e.  ( N `  { Y ,  X } )  /\  -.  w  e.  ( N `  { Y ,  T } ) ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
146145rexlimdv3a 2897 . . 3  |-  ( (
ph  /\  -.  Y  e.  ( N `  { Z ,  T }
) )  ->  ( E. w  e.  V  ( -.  w  e.  ( N `  { Y ,  X } )  /\  -.  w  e.  ( N `  { Y ,  T } ) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) ) )
147107, 146mpd 15 . 2  |-  ( (
ph  /\  -.  Y  e.  ( N `  { Z ,  T }
) )  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
148105, 147pm2.61dan 792 1  |-  ( ph  ->  E. z  e.  V  ( -.  z  e.  ( N `  { X ,  Y } )  /\  -.  z  e.  ( N `  { Z ,  T } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   E.wrex 2754    C_ wss 3413    C. wpss 3414   {csn 3971   {cpr 3973   ` cfv 5568  (class class class)co 6277   Basecbs 14839   +g cplusg 14907  SubGrpcsubg 16517   LSSumclsm 16976   LModclmod 17830   LSubSpclss 17896   LSpanclspn 17935   LVecclvec 18066   HLchlt 32348   LHypclh 32981   DVecHcdvh 34078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-riotaBAD 31957
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-iin 4273  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-tpos 6957  df-undef 7004  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-oadd 7170  df-er 7347  df-map 7458  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-nn 10576  df-2 10634  df-3 10635  df-4 10636  df-5 10637  df-6 10638  df-n0 10836  df-z 10905  df-uz 11127  df-fz 11725  df-struct 14841  df-ndx 14842  df-slot 14843  df-base 14844  df-sets 14845  df-ress 14846  df-plusg 14920  df-mulr 14921  df-sca 14923  df-vsca 14924  df-0g 15054  df-preset 15879  df-poset 15897  df-plt 15910  df-lub 15926  df-glb 15927  df-join 15928  df-meet 15929  df-p0 15991  df-p1 15992  df-lat 15998  df-clat 16060  df-mgm 16194  df-sgrp 16233  df-mnd 16243  df-submnd 16289  df-grp 16379  df-minusg 16380  df-sbg 16381  df-subg 16520  df-cntz 16677  df-lsm 16978  df-cmn 17122  df-abl 17123  df-mgp 17460  df-ur 17472  df-ring 17518  df-oppr 17590  df-dvdsr 17608  df-unit 17609  df-invr 17639  df-dvr 17650  df-drng 17716  df-lmod 17832  df-lss 17897  df-lsp 17936  df-lvec 18067  df-lsatoms 31974  df-oposet 32174  df-ol 32176  df-oml 32177  df-covers 32264  df-ats 32265  df-atl 32296  df-cvlat 32320  df-hlat 32349  df-llines 32495  df-lplanes 32496  df-lvols 32497  df-lines 32498  df-psubsp 32500  df-pmap 32501  df-padd 32793  df-lhyp 32985  df-laut 32986  df-ldil 33101  df-ltrn 33102  df-trl 33157  df-tgrp 33742  df-tendo 33754  df-edring 33756  df-dveca 34002  df-disoa 34029  df-dvech 34079  df-dib 34139  df-dic 34173  df-dih 34229  df-doch 34348  df-djh 34395
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator