MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvgt0lem2 Structured version   Unicode version

Theorem dvgt0lem2 21480
Description: Lemma for dvgt0 21481 and dvlt0 21482. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
dvgt0.a  |-  ( ph  ->  A  e.  RR )
dvgt0.b  |-  ( ph  ->  B  e.  RR )
dvgt0.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
dvgt0lem.d  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> S )
dvgt0lem.o  |-  O  Or  RR
dvgt0lem.i  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( F `  x ) O ( F `  y ) )
Assertion
Ref Expression
dvgt0lem2  |-  ( ph  ->  F  Isom  <  ,  O  ( ( A [,] B ) ,  ran  F ) )
Distinct variable groups:    x, y, A    x, O, y    ph, x, y    x, B, y    x, F, y
Allowed substitution hints:    S( x, y)

Proof of Theorem dvgt0lem2
StepHypRef Expression
1 dvgt0lem.i . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( A [,] B )  /\  y  e.  ( A [,] B ) ) )  /\  x  <  y
)  ->  ( F `  x ) O ( F `  y ) )
21ex 434 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( A [,] B
)  /\  y  e.  ( A [,] B ) ) )  ->  (
x  <  y  ->  ( F `  x ) O ( F `  y ) ) )
32ralrimivva 2813 . . . 4  |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x
) O ( F `
 y ) ) )
4 dvgt0.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
5 dvgt0.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
6 iccssre 11382 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
74, 5, 6syl2anc 661 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  RR )
8 ltso 9460 . . . . . 6  |-  <  Or  RR
9 soss 4664 . . . . . 6  |-  ( ( A [,] B ) 
C_  RR  ->  (  < 
Or  RR  ->  <  Or  ( A [,] B ) ) )
107, 8, 9mpisyl 18 . . . . 5  |-  ( ph  ->  <  Or  ( A [,] B ) )
11 dvgt0lem.o . . . . . 6  |-  O  Or  RR
1211a1i 11 . . . . 5  |-  ( ph  ->  O  Or  RR )
13 dvgt0.f . . . . . 6  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
14 cncff 20474 . . . . . 6  |-  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  F :
( A [,] B
) --> RR )
1513, 14syl 16 . . . . 5  |-  ( ph  ->  F : ( A [,] B ) --> RR )
16 ssid 3380 . . . . . 6  |-  ( A [,] B )  C_  ( A [,] B )
1716a1i 11 . . . . 5  |-  ( ph  ->  ( A [,] B
)  C_  ( A [,] B ) )
18 soisores 6023 . . . . 5  |-  ( ( (  <  Or  ( A [,] B )  /\  O  Or  RR )  /\  ( F : ( A [,] B ) --> RR  /\  ( A [,] B )  C_  ( A [,] B ) ) )  ->  (
( F  |`  ( A [,] B ) ) 
Isom  <  ,  O  ( ( A [,] B
) ,  ( F
" ( A [,] B ) ) )  <->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x ) O ( F `  y ) ) ) )
1910, 12, 15, 17, 18syl22anc 1219 . . . 4  |-  ( ph  ->  ( ( F  |`  ( A [,] B ) )  Isom  <  ,  O  ( ( A [,] B ) ,  ( F " ( A [,] B ) ) )  <->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x
) O ( F `
 y ) ) ) )
203, 19mpbird 232 . . 3  |-  ( ph  ->  ( F  |`  ( A [,] B ) ) 
Isom  <  ,  O  ( ( A [,] B
) ,  ( F
" ( A [,] B ) ) ) )
21 ffn 5564 . . . . 5  |-  ( F : ( A [,] B ) --> RR  ->  F  Fn  ( A [,] B ) )
2213, 14, 213syl 20 . . . 4  |-  ( ph  ->  F  Fn  ( A [,] B ) )
23 fnresdm 5525 . . . 4  |-  ( F  Fn  ( A [,] B )  ->  ( F  |`  ( A [,] B ) )  =  F )
24 isoeq1 6015 . . . 4  |-  ( ( F  |`  ( A [,] B ) )  =  F  ->  ( ( F  |`  ( A [,] B ) )  Isom  <  ,  O  ( ( A [,] B ) ,  ( F " ( A [,] B ) ) )  <->  F  Isom  <  ,  O  ( ( A [,] B ) ,  ( F " ( A [,] B ) ) ) ) )
2522, 23, 243syl 20 . . 3  |-  ( ph  ->  ( ( F  |`  ( A [,] B ) )  Isom  <  ,  O  ( ( A [,] B ) ,  ( F " ( A [,] B ) ) )  <->  F  Isom  <  ,  O  ( ( A [,] B ) ,  ( F " ( A [,] B ) ) ) ) )
2620, 25mpbid 210 . 2  |-  ( ph  ->  F  Isom  <  ,  O  ( ( A [,] B ) ,  ( F " ( A [,] B ) ) ) )
27 fnima 5534 . . 3  |-  ( F  Fn  ( A [,] B )  ->  ( F " ( A [,] B ) )  =  ran  F )
28 isoeq5 6019 . . 3  |-  ( ( F " ( A [,] B ) )  =  ran  F  -> 
( F  Isom  <  ,  O  ( ( A [,] B ) ,  ( F " ( A [,] B ) ) )  <->  F  Isom  <  ,  O  ( ( A [,] B ) ,  ran  F ) ) )
2922, 27, 283syl 20 . 2  |-  ( ph  ->  ( F  Isom  <  ,  O  ( ( A [,] B ) ,  ( F " ( A [,] B ) ) )  <->  F  Isom  <  ,  O  ( ( A [,] B ) ,  ran  F ) ) )
3026, 29mpbid 210 1  |-  ( ph  ->  F  Isom  <  ,  O  ( ( A [,] B ) ,  ran  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720    C_ wss 3333   class class class wbr 4297    Or wor 4645   ran crn 4846    |` cres 4847   "cima 4848    Fn wfn 5418   -->wf 5419   ` cfv 5423    Isom wiso 5424  (class class class)co 6096   RRcr 9286    < clt 9423   (,)cioo 11305   [,]cicc 11308   -cn->ccncf 20457    _D cdv 21343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-pre-lttri 9361  ax-pre-lttrn 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-po 4646  df-so 4647  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-er 7106  df-map 7221  df-en 7316  df-dom 7317  df-sdom 7318  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-icc 11312  df-cncf 20459
This theorem is referenced by:  dvgt0  21481  dvlt0  21482
  Copyright terms: Public domain W3C validator