MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem3 Structured version   Unicode version

Theorem dvfsumlem3 22164
Description: Lemma for dvfsumrlim 22167. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
dvfsum.s  |-  S  =  ( T (,) +oo )
dvfsum.z  |-  Z  =  ( ZZ>= `  M )
dvfsum.m  |-  ( ph  ->  M  e.  ZZ )
dvfsum.d  |-  ( ph  ->  D  e.  RR )
dvfsum.md  |-  ( ph  ->  M  <_  ( D  +  1 ) )
dvfsum.t  |-  ( ph  ->  T  e.  RR )
dvfsum.a  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
dvfsum.b1  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  V )
dvfsum.b2  |-  ( (
ph  /\  x  e.  Z )  ->  B  e.  RR )
dvfsum.b3  |-  ( ph  ->  ( RR  _D  (
x  e.  S  |->  A ) )  =  ( x  e.  S  |->  B ) )
dvfsum.c  |-  ( x  =  k  ->  B  =  C )
dvfsum.u  |-  ( ph  ->  U  e.  RR* )
dvfsum.l  |-  ( (
ph  /\  ( x  e.  S  /\  k  e.  S )  /\  ( D  <_  x  /\  x  <_  k  /\  k  <_  U ) )  ->  C  <_  B )
dvfsum.h  |-  H  =  ( x  e.  S  |->  ( ( ( x  -  ( |_ `  x ) )  x.  B )  +  (
sum_ k  e.  ( M ... ( |_
`  x ) ) C  -  A ) ) )
dvfsumlem1.1  |-  ( ph  ->  X  e.  S )
dvfsumlem1.2  |-  ( ph  ->  Y  e.  S )
dvfsumlem1.3  |-  ( ph  ->  D  <_  X )
dvfsumlem1.4  |-  ( ph  ->  X  <_  Y )
dvfsumlem1.5  |-  ( ph  ->  Y  <_  U )
Assertion
Ref Expression
dvfsumlem3  |-  ( ph  ->  ( ( H `  Y )  <_  ( H `  X )  /\  ( ( H `  X )  -  [_ X  /  x ]_ B
)  <_  ( ( H `  Y )  -  [_ Y  /  x ]_ B ) ) )
Distinct variable groups:    B, k    x, C    x, k, D    ph, k, x    S, k, x    k, M, x   
x, T    k, Y, x    x, Z    U, k, x    k, X, x
Allowed substitution hints:    A( x, k)    B( x)    C( k)    T( k)    H( x, k)    V( x, k)    Z( k)

Proof of Theorem dvfsumlem3
Dummy variables  y  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . 4  |-  S  =  ( T (,) +oo )
2 ioossre 11582 . . . 4  |-  ( T (,) +oo )  C_  RR
31, 2eqsstri 3534 . . 3  |-  S  C_  RR
4 dvfsumlem1.2 . . 3  |-  ( ph  ->  Y  e.  S )
53, 4sseldi 3502 . 2  |-  ( ph  ->  Y  e.  RR )
6 dvfsumlem1.1 . . . 4  |-  ( ph  ->  X  e.  S )
73, 6sseldi 3502 . . 3  |-  ( ph  ->  X  e.  RR )
8 reflcl 11897 . . 3  |-  ( X  e.  RR  ->  ( |_ `  X )  e.  RR )
9 peano2re 9748 . . 3  |-  ( ( |_ `  X )  e.  RR  ->  (
( |_ `  X
)  +  1 )  e.  RR )
107, 8, 93syl 20 . 2  |-  ( ph  ->  ( ( |_ `  X )  +  1 )  e.  RR )
11 dvfsum.z . . 3  |-  Z  =  ( ZZ>= `  M )
12 dvfsum.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
1312adantr 465 . . 3  |-  ( (
ph  /\  Y  <_  ( ( |_ `  X
)  +  1 ) )  ->  M  e.  ZZ )
14 dvfsum.d . . . 4  |-  ( ph  ->  D  e.  RR )
1514adantr 465 . . 3  |-  ( (
ph  /\  Y  <_  ( ( |_ `  X
)  +  1 ) )  ->  D  e.  RR )
16 dvfsum.md . . . 4  |-  ( ph  ->  M  <_  ( D  +  1 ) )
1716adantr 465 . . 3  |-  ( (
ph  /\  Y  <_  ( ( |_ `  X
)  +  1 ) )  ->  M  <_  ( D  +  1 ) )
18 dvfsum.t . . . 4  |-  ( ph  ->  T  e.  RR )
1918adantr 465 . . 3  |-  ( (
ph  /\  Y  <_  ( ( |_ `  X
)  +  1 ) )  ->  T  e.  RR )
20 dvfsum.a . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
2120adantlr 714 . . 3  |-  ( ( ( ph  /\  Y  <_  ( ( |_ `  X )  +  1 ) )  /\  x  e.  S )  ->  A  e.  RR )
22 dvfsum.b1 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  V )
2322adantlr 714 . . 3  |-  ( ( ( ph  /\  Y  <_  ( ( |_ `  X )  +  1 ) )  /\  x  e.  S )  ->  B  e.  V )
24 dvfsum.b2 . . . 4  |-  ( (
ph  /\  x  e.  Z )  ->  B  e.  RR )
2524adantlr 714 . . 3  |-  ( ( ( ph  /\  Y  <_  ( ( |_ `  X )  +  1 ) )  /\  x  e.  Z )  ->  B  e.  RR )
26 dvfsum.b3 . . . 4  |-  ( ph  ->  ( RR  _D  (
x  e.  S  |->  A ) )  =  ( x  e.  S  |->  B ) )
2726adantr 465 . . 3  |-  ( (
ph  /\  Y  <_  ( ( |_ `  X
)  +  1 ) )  ->  ( RR  _D  ( x  e.  S  |->  A ) )  =  ( x  e.  S  |->  B ) )
28 dvfsum.c . . 3  |-  ( x  =  k  ->  B  =  C )
29 dvfsum.u . . . 4  |-  ( ph  ->  U  e.  RR* )
3029adantr 465 . . 3  |-  ( (
ph  /\  Y  <_  ( ( |_ `  X
)  +  1 ) )  ->  U  e.  RR* )
31 dvfsum.l . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  k  e.  S )  /\  ( D  <_  x  /\  x  <_  k  /\  k  <_  U ) )  ->  C  <_  B )
32313adant1r 1221 . . 3  |-  ( ( ( ph  /\  Y  <_  ( ( |_ `  X )  +  1 ) )  /\  (
x  e.  S  /\  k  e.  S )  /\  ( D  <_  x  /\  x  <_  k  /\  k  <_  U ) )  ->  C  <_  B
)
33 dvfsum.h . . 3  |-  H  =  ( x  e.  S  |->  ( ( ( x  -  ( |_ `  x ) )  x.  B )  +  (
sum_ k  e.  ( M ... ( |_
`  x ) ) C  -  A ) ) )
346adantr 465 . . 3  |-  ( (
ph  /\  Y  <_  ( ( |_ `  X
)  +  1 ) )  ->  X  e.  S )
354adantr 465 . . 3  |-  ( (
ph  /\  Y  <_  ( ( |_ `  X
)  +  1 ) )  ->  Y  e.  S )
36 dvfsumlem1.3 . . . 4  |-  ( ph  ->  D  <_  X )
3736adantr 465 . . 3  |-  ( (
ph  /\  Y  <_  ( ( |_ `  X
)  +  1 ) )  ->  D  <_  X )
38 dvfsumlem1.4 . . . 4  |-  ( ph  ->  X  <_  Y )
3938adantr 465 . . 3  |-  ( (
ph  /\  Y  <_  ( ( |_ `  X
)  +  1 ) )  ->  X  <_  Y )
40 dvfsumlem1.5 . . . 4  |-  ( ph  ->  Y  <_  U )
4140adantr 465 . . 3  |-  ( (
ph  /\  Y  <_  ( ( |_ `  X
)  +  1 ) )  ->  Y  <_  U )
42 simpr 461 . . 3  |-  ( (
ph  /\  Y  <_  ( ( |_ `  X
)  +  1 ) )  ->  Y  <_  ( ( |_ `  X
)  +  1 ) )
431, 11, 13, 15, 17, 19, 21, 23, 25, 27, 28, 30, 32, 33, 34, 35, 37, 39, 41, 42dvfsumlem2 22163 . 2  |-  ( (
ph  /\  Y  <_  ( ( |_ `  X
)  +  1 ) )  ->  ( ( H `  Y )  <_  ( H `  X
)  /\  ( ( H `  X )  -  [_ X  /  x ]_ B )  <_  (
( H `  Y
)  -  [_ Y  /  x ]_ B ) ) )
443a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  S  C_  RR )
4544sselda 3504 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  RR )
46 reflcl 11897 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
4745, 46syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  S )  ->  ( |_ `  x )  e.  RR )
4845, 47resubcld 9983 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  S )  ->  (
x  -  ( |_
`  x ) )  e.  RR )
4944, 20, 22, 26dvmptrecl 22160 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  RR )
5048, 49remulcld 9620 . . . . . . . 8  |-  ( (
ph  /\  x  e.  S )  ->  (
( x  -  ( |_ `  x ) )  x.  B )  e.  RR )
51 fzfid 12047 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  S )  ->  ( M ... ( |_ `  x ) )  e. 
Fin )
5224ralrimiva 2878 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  Z  B  e.  RR )
5352adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  S )  ->  A. x  e.  Z  B  e.  RR )
54 elfzuz 11680 . . . . . . . . . . . 12  |-  ( k  e.  ( M ... ( |_ `  x ) )  ->  k  e.  ( ZZ>= `  M )
)
5554, 11syl6eleqr 2566 . . . . . . . . . . 11  |-  ( k  e.  ( M ... ( |_ `  x ) )  ->  k  e.  Z )
5628eleq1d 2536 . . . . . . . . . . . 12  |-  ( x  =  k  ->  ( B  e.  RR  <->  C  e.  RR ) )
5756rspccva 3213 . . . . . . . . . . 11  |-  ( ( A. x  e.  Z  B  e.  RR  /\  k  e.  Z )  ->  C  e.  RR )
5853, 55, 57syl2an 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  S )  /\  k  e.  ( M ... ( |_ `  x ) ) )  ->  C  e.  RR )
5951, 58fsumrecl 13515 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  S )  ->  sum_ k  e.  ( M ... ( |_ `  x ) ) C  e.  RR )
6059, 20resubcld 9983 . . . . . . . 8  |-  ( (
ph  /\  x  e.  S )  ->  ( sum_ k  e.  ( M ... ( |_ `  x ) ) C  -  A )  e.  RR )
6150, 60readdcld 9619 . . . . . . 7  |-  ( (
ph  /\  x  e.  S )  ->  (
( ( x  -  ( |_ `  x ) )  x.  B )  +  ( sum_ k  e.  ( M ... ( |_ `  x ) ) C  -  A ) )  e.  RR )
6261, 33fmptd 6043 . . . . . 6  |-  ( ph  ->  H : S --> RR )
6362adantr 465 . . . . 5  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  H : S
--> RR )
644adantr 465 . . . . 5  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  Y  e.  S )
6563, 64ffvelrnd 6020 . . . 4  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( H `  Y )  e.  RR )
665adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  Y  e.  RR )
67 reflcl 11897 . . . . . . . 8  |-  ( Y  e.  RR  ->  ( |_ `  Y )  e.  RR )
6866, 67syl 16 . . . . . . 7  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( |_ `  Y )  e.  RR )
6918adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  T  e.  RR )
707adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  X  e.  RR )
7170, 8, 93syl 20 . . . . . . . 8  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( |_ `  X )  +  1 )  e.  RR )
726, 1syl6eleq 2565 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  ( T (,) +oo ) )
7318rexrd 9639 . . . . . . . . . . . . 13  |-  ( ph  ->  T  e.  RR* )
74 elioopnf 11614 . . . . . . . . . . . . 13  |-  ( T  e.  RR*  ->  ( X  e.  ( T (,) +oo )  <->  ( X  e.  RR  /\  T  < 
X ) ) )
7573, 74syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( X  e.  ( T (,) +oo )  <->  ( X  e.  RR  /\  T  <  X ) ) )
7672, 75mpbid 210 . . . . . . . . . . 11  |-  ( ph  ->  ( X  e.  RR  /\  T  <  X ) )
7776simprd 463 . . . . . . . . . 10  |-  ( ph  ->  T  <  X )
78 fllep1 11902 . . . . . . . . . . 11  |-  ( X  e.  RR  ->  X  <_  ( ( |_ `  X )  +  1 ) )
797, 78syl 16 . . . . . . . . . 10  |-  ( ph  ->  X  <_  ( ( |_ `  X )  +  1 ) )
8018, 7, 10, 77, 79ltletrd 9737 . . . . . . . . 9  |-  ( ph  ->  T  <  ( ( |_ `  X )  +  1 ) )
8180adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  T  <  ( ( |_ `  X
)  +  1 ) )
82 simpr 461 . . . . . . . . 9  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( |_ `  X )  +  1 )  <_  Y
)
8370flcld 11899 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( |_ `  X )  e.  ZZ )
8483peano2zd 10965 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( |_ `  X )  +  1 )  e.  ZZ )
85 flge 11906 . . . . . . . . . 10  |-  ( ( Y  e.  RR  /\  ( ( |_ `  X )  +  1 )  e.  ZZ )  ->  ( ( ( |_ `  X )  +  1 )  <_  Y 
<->  ( ( |_ `  X )  +  1 )  <_  ( |_ `  Y ) ) )
8666, 84, 85syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( (
( |_ `  X
)  +  1 )  <_  Y  <->  ( ( |_ `  X )  +  1 )  <_  ( |_ `  Y ) ) )
8782, 86mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( |_ `  X )  +  1 )  <_  ( |_ `  Y ) )
8869, 71, 68, 81, 87ltletrd 9737 . . . . . . 7  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  T  <  ( |_ `  Y ) )
8973adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  T  e.  RR* )
90 elioopnf 11614 . . . . . . . 8  |-  ( T  e.  RR*  ->  ( ( |_ `  Y )  e.  ( T (,) +oo )  <->  ( ( |_
`  Y )  e.  RR  /\  T  < 
( |_ `  Y
) ) ) )
9189, 90syl 16 . . . . . . 7  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( |_ `  Y )  e.  ( T (,) +oo ) 
<->  ( ( |_ `  Y )  e.  RR  /\  T  <  ( |_
`  Y ) ) ) )
9268, 88, 91mpbir2and 920 . . . . . 6  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( |_ `  Y )  e.  ( T (,) +oo )
)
9392, 1syl6eleqr 2566 . . . . 5  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( |_ `  Y )  e.  S
)
9463, 93ffvelrnd 6020 . . . 4  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( H `  ( |_ `  Y
) )  e.  RR )
956adantr 465 . . . . 5  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  X  e.  S )
9663, 95ffvelrnd 6020 . . . 4  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( H `  X )  e.  RR )
9712adantr 465 . . . . . 6  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  M  e.  ZZ )
9814adantr 465 . . . . . 6  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  D  e.  RR )
9916adantr 465 . . . . . 6  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  M  <_  ( D  +  1 ) )
10020adantlr 714 . . . . . 6  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  x  e.  S )  ->  A  e.  RR )
10122adantlr 714 . . . . . 6  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  x  e.  S )  ->  B  e.  V )
10224adantlr 714 . . . . . 6  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  x  e.  Z )  ->  B  e.  RR )
10326adantr 465 . . . . . 6  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( RR  _D  ( x  e.  S  |->  A ) )  =  ( x  e.  S  |->  B ) )
10429adantr 465 . . . . . 6  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  U  e.  RR* )
105313adant1r 1221 . . . . . 6  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  ( x  e.  S  /\  k  e.  S
)  /\  ( D  <_  x  /\  x  <_ 
k  /\  k  <_  U ) )  ->  C  <_  B )
10636adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  D  <_  X )
10770, 78syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  X  <_  ( ( |_ `  X
)  +  1 ) )
10898, 70, 71, 106, 107letrd 9734 . . . . . . 7  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  D  <_  ( ( |_ `  X
)  +  1 ) )
10998, 71, 68, 108, 87letrd 9734 . . . . . 6  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  D  <_  ( |_ `  Y ) )
110 flle 11900 . . . . . . 7  |-  ( Y  e.  RR  ->  ( |_ `  Y )  <_  Y )
11166, 110syl 16 . . . . . 6  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( |_ `  Y )  <_  Y
)
11240adantr 465 . . . . . 6  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  Y  <_  U )
113 fllep1 11902 . . . . . . . 8  |-  ( Y  e.  RR  ->  Y  <_  ( ( |_ `  Y )  +  1 ) )
11466, 113syl 16 . . . . . . 7  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  Y  <_  ( ( |_ `  Y
)  +  1 ) )
115 flidm 11910 . . . . . . . . 9  |-  ( Y  e.  RR  ->  ( |_ `  ( |_ `  Y ) )  =  ( |_ `  Y
) )
11666, 115syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( |_ `  ( |_ `  Y
) )  =  ( |_ `  Y ) )
117116oveq1d 6297 . . . . . . 7  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( |_ `  ( |_ `  Y ) )  +  1 )  =  ( ( |_ `  Y
)  +  1 ) )
118114, 117breqtrrd 4473 . . . . . 6  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  Y  <_  ( ( |_ `  ( |_ `  Y ) )  +  1 ) )
1191, 11, 97, 98, 99, 69, 100, 101, 102, 103, 28, 104, 105, 33, 93, 64, 109, 111, 112, 118dvfsumlem2 22163 . . . . 5  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( H `  Y )  <_  ( H `  ( |_ `  Y ) )  /\  ( ( H `
 ( |_ `  Y ) )  -  [_ ( |_ `  Y
)  /  x ]_ B )  <_  (
( H `  Y
)  -  [_ Y  /  x ]_ B ) ) )
120119simpld 459 . . . 4  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( H `  Y )  <_  ( H `  ( |_ `  Y ) ) )
121 elioopnf 11614 . . . . . . . . . 10  |-  ( T  e.  RR*  ->  ( ( ( |_ `  X
)  +  1 )  e.  ( T (,) +oo )  <->  ( ( ( |_ `  X )  +  1 )  e.  RR  /\  T  < 
( ( |_ `  X )  +  1 ) ) ) )
12273, 121syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( ( |_
`  X )  +  1 )  e.  ( T (,) +oo )  <->  ( ( ( |_ `  X )  +  1 )  e.  RR  /\  T  <  ( ( |_
`  X )  +  1 ) ) ) )
12310, 80, 122mpbir2and 920 . . . . . . . 8  |-  ( ph  ->  ( ( |_ `  X )  +  1 )  e.  ( T (,) +oo ) )
124123, 1syl6eleqr 2566 . . . . . . 7  |-  ( ph  ->  ( ( |_ `  X )  +  1 )  e.  S )
125124adantr 465 . . . . . 6  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( |_ `  X )  +  1 )  e.  S
)
12663, 125ffvelrnd 6020 . . . . 5  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( H `  ( ( |_ `  X )  +  1 ) )  e.  RR )
12766flcld 11899 . . . . . . 7  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( |_ `  Y )  e.  ZZ )
128 eluz2 11084 . . . . . . 7  |-  ( ( |_ `  Y )  e.  ( ZZ>= `  (
( |_ `  X
)  +  1 ) )  <->  ( ( ( |_ `  X )  +  1 )  e.  ZZ  /\  ( |_
`  Y )  e.  ZZ  /\  ( ( |_ `  X )  +  1 )  <_ 
( |_ `  Y
) ) )
12984, 127, 87, 128syl3anbrc 1180 . . . . . 6  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( |_ `  Y )  e.  (
ZZ>= `  ( ( |_
`  X )  +  1 ) ) )
13063adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( |_ `  Y ) ) )  ->  H : S --> RR )
131 elfzelz 11684 . . . . . . . . . . 11  |-  ( m  e.  ( ( ( |_ `  X )  +  1 ) ... ( |_ `  Y
) )  ->  m  e.  ZZ )
132131adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( |_ `  Y ) ) )  ->  m  e.  ZZ )
133132zred 10962 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( |_ `  Y ) ) )  ->  m  e.  RR )
13469adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( |_ `  Y ) ) )  ->  T  e.  RR )
13571adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( |_ `  Y ) ) )  ->  ( ( |_
`  X )  +  1 )  e.  RR )
13680ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( |_ `  Y ) ) )  ->  T  <  (
( |_ `  X
)  +  1 ) )
137 elfzle1 11685 . . . . . . . . . . 11  |-  ( m  e.  ( ( ( |_ `  X )  +  1 ) ... ( |_ `  Y
) )  ->  (
( |_ `  X
)  +  1 )  <_  m )
138137adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( |_ `  Y ) ) )  ->  ( ( |_
`  X )  +  1 )  <_  m
)
139134, 135, 133, 136, 138ltletrd 9737 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( |_ `  Y ) ) )  ->  T  <  m
)
14073ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( |_ `  Y ) ) )  ->  T  e.  RR* )
141 elioopnf 11614 . . . . . . . . . 10  |-  ( T  e.  RR*  ->  ( m  e.  ( T (,) +oo )  <->  ( m  e.  RR  /\  T  < 
m ) ) )
142140, 141syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( |_ `  Y ) ) )  ->  ( m  e.  ( T (,) +oo ) 
<->  ( m  e.  RR  /\  T  <  m ) ) )
143133, 139, 142mpbir2and 920 . . . . . . . 8  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( |_ `  Y ) ) )  ->  m  e.  ( T (,) +oo )
)
144143, 1syl6eleqr 2566 . . . . . . 7  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( |_ `  Y ) ) )  ->  m  e.  S
)
145130, 144ffvelrnd 6020 . . . . . 6  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( |_ `  Y ) ) )  ->  ( H `  m )  e.  RR )
14697adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  M  e.  ZZ )
14798adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  D  e.  RR )
14816ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  M  <_  ( D  +  1 ) )
14969adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  T  e.  RR )
150100adantlr 714 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( ( |_ `  X )  +  1 )  <_  Y )  /\  m  e.  (
( ( |_ `  X )  +  1 ) ... ( ( |_ `  Y )  -  1 ) ) )  /\  x  e.  S )  ->  A  e.  RR )
151101adantlr 714 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( ( |_ `  X )  +  1 )  <_  Y )  /\  m  e.  (
( ( |_ `  X )  +  1 ) ... ( ( |_ `  Y )  -  1 ) ) )  /\  x  e.  S )  ->  B  e.  V )
152102adantlr 714 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( ( |_ `  X )  +  1 )  <_  Y )  /\  m  e.  (
( ( |_ `  X )  +  1 ) ... ( ( |_ `  Y )  -  1 ) ) )  /\  x  e.  Z )  ->  B  e.  RR )
153103adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( RR  _D  ( x  e.  S  |->  A ) )  =  ( x  e.  S  |->  B ) )
154104adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  U  e.  RR* )
1551053adant1r 1221 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( ( |_ `  X )  +  1 )  <_  Y )  /\  m  e.  (
( ( |_ `  X )  +  1 ) ... ( ( |_ `  Y )  -  1 ) ) )  /\  ( x  e.  S  /\  k  e.  S )  /\  ( D  <_  x  /\  x  <_  k  /\  k  <_  U ) )  ->  C  <_  B )
156 elfzelz 11684 . . . . . . . . . . . 12  |-  ( m  e.  ( ( ( |_ `  X )  +  1 ) ... ( ( |_ `  Y )  -  1 ) )  ->  m  e.  ZZ )
157156adantl 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  m  e.  ZZ )
158157zred 10962 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  m  e.  RR )
15971adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( ( |_
`  X )  +  1 )  e.  RR )
16080ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  T  <  (
( |_ `  X
)  +  1 ) )
161 elfzle1 11685 . . . . . . . . . . . 12  |-  ( m  e.  ( ( ( |_ `  X )  +  1 ) ... ( ( |_ `  Y )  -  1 ) )  ->  (
( |_ `  X
)  +  1 )  <_  m )
162161adantl 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( ( |_
`  X )  +  1 )  <_  m
)
163149, 159, 158, 160, 162ltletrd 9737 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  T  <  m
)
164149rexrd 9639 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  T  e.  RR* )
165164, 141syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( m  e.  ( T (,) +oo ) 
<->  ( m  e.  RR  /\  T  <  m ) ) )
166158, 163, 165mpbir2and 920 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  m  e.  ( T (,) +oo )
)
167166, 1syl6eleqr 2566 . . . . . . . 8  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  m  e.  S
)
168 peano2re 9748 . . . . . . . . . . 11  |-  ( m  e.  RR  ->  (
m  +  1 )  e.  RR )
169158, 168syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( m  + 
1 )  e.  RR )
170158lep1d 10473 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  m  <_  (
m  +  1 ) )
171149, 158, 169, 163, 170ltletrd 9737 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  T  <  (
m  +  1 ) )
172 elioopnf 11614 . . . . . . . . . . 11  |-  ( T  e.  RR*  ->  ( ( m  +  1 )  e.  ( T (,) +oo )  <->  ( ( m  +  1 )  e.  RR  /\  T  < 
( m  +  1 ) ) ) )
173164, 172syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( ( m  +  1 )  e.  ( T (,) +oo ) 
<->  ( ( m  + 
1 )  e.  RR  /\  T  <  ( m  +  1 ) ) ) )
174169, 171, 173mpbir2and 920 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( m  + 
1 )  e.  ( T (,) +oo )
)
175174, 1syl6eleqr 2566 . . . . . . . 8  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( m  + 
1 )  e.  S
)
176108adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  D  <_  (
( |_ `  X
)  +  1 ) )
177147, 159, 158, 176, 162letrd 9734 . . . . . . . 8  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  D  <_  m
)
178169rexrd 9639 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( m  + 
1 )  e.  RR* )
17968rexrd 9639 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( |_ `  Y )  e.  RR* )
180179adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( |_ `  Y )  e.  RR* )
181 elfzle2 11686 . . . . . . . . . . 11  |-  ( m  e.  ( ( ( |_ `  X )  +  1 ) ... ( ( |_ `  Y )  -  1 ) )  ->  m  <_  ( ( |_ `  Y )  -  1 ) )
182181adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  m  <_  (
( |_ `  Y
)  -  1 ) )
183 1red 9607 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  1  e.  RR )
18466adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  Y  e.  RR )
185184, 67syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( |_ `  Y )  e.  RR )
186 leaddsub 10024 . . . . . . . . . . 11  |-  ( ( m  e.  RR  /\  1  e.  RR  /\  ( |_ `  Y )  e.  RR )  ->  (
( m  +  1 )  <_  ( |_ `  Y )  <->  m  <_  ( ( |_ `  Y
)  -  1 ) ) )
187158, 183, 185, 186syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( ( m  +  1 )  <_ 
( |_ `  Y
)  <->  m  <_  ( ( |_ `  Y )  -  1 ) ) )
188182, 187mpbird 232 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( m  + 
1 )  <_  ( |_ `  Y ) )
18966rexrd 9639 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  Y  e.  RR* )
190179, 189, 104, 111, 112xrletrd 11361 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( |_ `  Y )  <_  U
)
191190adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( |_ `  Y )  <_  U
)
192178, 180, 154, 188, 191xrletrd 11361 . . . . . . . 8  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( m  + 
1 )  <_  U
)
193 flid 11909 . . . . . . . . . . . 12  |-  ( m  e.  ZZ  ->  ( |_ `  m )  =  m )
194157, 193syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( |_ `  m )  =  m )
195194eqcomd 2475 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  m  =  ( |_ `  m ) )
196195oveq1d 6297 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( m  + 
1 )  =  ( ( |_ `  m
)  +  1 ) )
197 eqle 9683 . . . . . . . . 9  |-  ( ( ( m  +  1 )  e.  RR  /\  ( m  +  1
)  =  ( ( |_ `  m )  +  1 ) )  ->  ( m  + 
1 )  <_  (
( |_ `  m
)  +  1 ) )
198169, 196, 197syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( m  + 
1 )  <_  (
( |_ `  m
)  +  1 ) )
1991, 11, 146, 147, 148, 149, 150, 151, 152, 153, 28, 154, 155, 33, 167, 175, 177, 170, 192, 198dvfsumlem2 22163 . . . . . . 7  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( ( H `
 ( m  + 
1 ) )  <_ 
( H `  m
)  /\  ( ( H `  m )  -  [_ m  /  x ]_ B )  <_  (
( H `  (
m  +  1 ) )  -  [_ (
m  +  1 )  /  x ]_ B
) ) )
200199simpld 459 . . . . . 6  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( H `  ( m  +  1
) )  <_  ( H `  m )
)
201129, 145, 200monoord2 12102 . . . . 5  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( H `  ( |_ `  Y
) )  <_  ( H `  ( ( |_ `  X )  +  1 ) ) )
20271rexrd 9639 . . . . . . . 8  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( |_ `  X )  +  1 )  e.  RR* )
203202, 179, 104, 87, 190xrletrd 11361 . . . . . . 7  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( |_ `  X )  +  1 )  <_  U
)
20471leidd 10115 . . . . . . 7  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( |_ `  X )  +  1 )  <_  (
( |_ `  X
)  +  1 ) )
2051, 11, 97, 98, 99, 69, 100, 101, 102, 103, 28, 104, 105, 33, 95, 125, 106, 107, 203, 204dvfsumlem2 22163 . . . . . 6  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( H `  ( ( |_ `  X )  +  1 ) )  <_ 
( H `  X
)  /\  ( ( H `  X )  -  [_ X  /  x ]_ B )  <_  (
( H `  (
( |_ `  X
)  +  1 ) )  -  [_ (
( |_ `  X
)  +  1 )  /  x ]_ B
) ) )
206205simpld 459 . . . . 5  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( H `  ( ( |_ `  X )  +  1 ) )  <_  ( H `  X )
)
20794, 126, 96, 201, 206letrd 9734 . . . 4  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( H `  ( |_ `  Y
) )  <_  ( H `  X )
)
20865, 94, 96, 120, 207letrd 9734 . . 3  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( H `  Y )  <_  ( H `  X )
)
20949ralrimiva 2878 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  S  B  e.  RR )
210209adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  A. x  e.  S  B  e.  RR )
211 nfcsb1v 3451 . . . . . . . . . 10  |-  F/_ x [_ m  /  x ]_ B
212211nfel1 2645 . . . . . . . . 9  |-  F/ x [_ m  /  x ]_ B  e.  RR
213 csbeq1a 3444 . . . . . . . . . 10  |-  ( x  =  m  ->  B  =  [_ m  /  x ]_ B )
214213eleq1d 2536 . . . . . . . . 9  |-  ( x  =  m  ->  ( B  e.  RR  <->  [_ m  /  x ]_ B  e.  RR ) )
215212, 214rspc 3208 . . . . . . . 8  |-  ( m  e.  S  ->  ( A. x  e.  S  B  e.  RR  ->  [_ m  /  x ]_ B  e.  RR )
)
216210, 215mpan9 469 . . . . . . 7  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  S )  ->  [_ m  /  x ]_ B  e.  RR )
217216ralrimiva 2878 . . . . . 6  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  A. m  e.  S  [_ m  /  x ]_ B  e.  RR )
218 csbeq1 3438 . . . . . . . 8  |-  ( m  =  X  ->  [_ m  /  x ]_ B  = 
[_ X  /  x ]_ B )
219218eleq1d 2536 . . . . . . 7  |-  ( m  =  X  ->  ( [_ m  /  x ]_ B  e.  RR  <->  [_ X  /  x ]_ B  e.  RR )
)
220219rspcv 3210 . . . . . 6  |-  ( X  e.  S  ->  ( A. m  e.  S  [_ m  /  x ]_ B  e.  RR  ->  [_ X  /  x ]_ B  e.  RR )
)
22195, 217, 220sylc 60 . . . . 5  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  [_ X  /  x ]_ B  e.  RR )
22296, 221resubcld 9983 . . . 4  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( H `  X )  -  [_ X  /  x ]_ B )  e.  RR )
223 csbeq1 3438 . . . . . . . 8  |-  ( m  =  ( |_ `  Y )  ->  [_ m  /  x ]_ B  = 
[_ ( |_ `  Y )  /  x ]_ B )
224223eleq1d 2536 . . . . . . 7  |-  ( m  =  ( |_ `  Y )  ->  ( [_ m  /  x ]_ B  e.  RR  <->  [_ ( |_ `  Y
)  /  x ]_ B  e.  RR )
)
225224rspcv 3210 . . . . . 6  |-  ( ( |_ `  Y )  e.  S  ->  ( A. m  e.  S  [_ m  /  x ]_ B  e.  RR  ->  [_ ( |_ `  Y
)  /  x ]_ B  e.  RR )
)
22693, 217, 225sylc 60 . . . . 5  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  [_ ( |_
`  Y )  /  x ]_ B  e.  RR )
22794, 226resubcld 9983 . . . 4  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( H `  ( |_ `  Y ) )  -  [_ ( |_ `  Y
)  /  x ]_ B )  e.  RR )
228 csbeq1 3438 . . . . . . . 8  |-  ( m  =  Y  ->  [_ m  /  x ]_ B  = 
[_ Y  /  x ]_ B )
229228eleq1d 2536 . . . . . . 7  |-  ( m  =  Y  ->  ( [_ m  /  x ]_ B  e.  RR  <->  [_ Y  /  x ]_ B  e.  RR )
)
230229rspcv 3210 . . . . . 6  |-  ( Y  e.  S  ->  ( A. m  e.  S  [_ m  /  x ]_ B  e.  RR  ->  [_ Y  /  x ]_ B  e.  RR )
)
23164, 217, 230sylc 60 . . . . 5  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  [_ Y  /  x ]_ B  e.  RR )
23265, 231resubcld 9983 . . . 4  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( H `  Y )  -  [_ Y  /  x ]_ B )  e.  RR )
233 csbeq1 3438 . . . . . . . . 9  |-  ( m  =  ( ( |_
`  X )  +  1 )  ->  [_ m  /  x ]_ B  = 
[_ ( ( |_
`  X )  +  1 )  /  x ]_ B )
234233eleq1d 2536 . . . . . . . 8  |-  ( m  =  ( ( |_
`  X )  +  1 )  ->  ( [_ m  /  x ]_ B  e.  RR  <->  [_ ( ( |_ `  X )  +  1 )  /  x ]_ B  e.  RR )
)
235234rspcv 3210 . . . . . . 7  |-  ( ( ( |_ `  X
)  +  1 )  e.  S  ->  ( A. m  e.  S  [_ m  /  x ]_ B  e.  RR  ->  [_ ( ( |_ `  X )  +  1 )  /  x ]_ B  e.  RR )
)
236125, 217, 235sylc 60 . . . . . 6  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  [_ ( ( |_ `  X )  +  1 )  /  x ]_ B  e.  RR )
237126, 236resubcld 9983 . . . . 5  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( H `  ( ( |_ `  X )  +  1 ) )  -  [_ ( ( |_ `  X )  +  1 )  /  x ]_ B )  e.  RR )
238205simprd 463 . . . . 5  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( H `  X )  -  [_ X  /  x ]_ B )  <_  (
( H `  (
( |_ `  X
)  +  1 ) )  -  [_ (
( |_ `  X
)  +  1 )  /  x ]_ B
) )
239 vex 3116 . . . . . . . . 9  |-  m  e. 
_V
240 fveq2 5864 . . . . . . . . . . 11  |-  ( y  =  m  ->  ( H `  y )  =  ( H `  m ) )
241 csbeq1 3438 . . . . . . . . . . 11  |-  ( y  =  m  ->  [_ y  /  x ]_ B  = 
[_ m  /  x ]_ B )
242240, 241oveq12d 6300 . . . . . . . . . 10  |-  ( y  =  m  ->  (
( H `  y
)  -  [_ y  /  x ]_ B )  =  ( ( H `
 m )  -  [_ m  /  x ]_ B ) )
243 eqid 2467 . . . . . . . . . 10  |-  ( y  e.  _V  |->  ( ( H `  y )  -  [_ y  /  x ]_ B ) )  =  ( y  e. 
_V  |->  ( ( H `
 y )  -  [_ y  /  x ]_ B ) )
244 ovex 6307 . . . . . . . . . 10  |-  ( ( H `  y )  -  [_ y  /  x ]_ B )  e. 
_V
245242, 243, 244fvmpt3i 5952 . . . . . . . . 9  |-  ( m  e.  _V  ->  (
( y  e.  _V  |->  ( ( H `  y )  -  [_ y  /  x ]_ B
) ) `  m
)  =  ( ( H `  m )  -  [_ m  /  x ]_ B ) )
246239, 245ax-mp 5 . . . . . . . 8  |-  ( ( y  e.  _V  |->  ( ( H `  y
)  -  [_ y  /  x ]_ B ) ) `  m )  =  ( ( H `
 m )  -  [_ m  /  x ]_ B )
247144, 216syldan 470 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( |_ `  Y ) ) )  ->  [_ m  /  x ]_ B  e.  RR )
248145, 247resubcld 9983 . . . . . . . 8  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( |_ `  Y ) ) )  ->  ( ( H `
 m )  -  [_ m  /  x ]_ B )  e.  RR )
249246, 248syl5eqel 2559 . . . . . . 7  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( |_ `  Y ) ) )  ->  ( ( y  e.  _V  |->  ( ( H `  y )  -  [_ y  /  x ]_ B ) ) `
 m )  e.  RR )
250199simprd 463 . . . . . . . 8  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( ( H `
 m )  -  [_ m  /  x ]_ B )  <_  (
( H `  (
m  +  1 ) )  -  [_ (
m  +  1 )  /  x ]_ B
) )
251 ovex 6307 . . . . . . . . 9  |-  ( m  +  1 )  e. 
_V
252 fveq2 5864 . . . . . . . . . . 11  |-  ( y  =  ( m  + 
1 )  ->  ( H `  y )  =  ( H `  ( m  +  1
) ) )
253 csbeq1 3438 . . . . . . . . . . 11  |-  ( y  =  ( m  + 
1 )  ->  [_ y  /  x ]_ B  = 
[_ ( m  + 
1 )  /  x ]_ B )
254252, 253oveq12d 6300 . . . . . . . . . 10  |-  ( y  =  ( m  + 
1 )  ->  (
( H `  y
)  -  [_ y  /  x ]_ B )  =  ( ( H `
 ( m  + 
1 ) )  -  [_ ( m  +  1 )  /  x ]_ B ) )
255254, 243, 244fvmpt3i 5952 . . . . . . . . 9  |-  ( ( m  +  1 )  e.  _V  ->  (
( y  e.  _V  |->  ( ( H `  y )  -  [_ y  /  x ]_ B
) ) `  (
m  +  1 ) )  =  ( ( H `  ( m  +  1 ) )  -  [_ ( m  +  1 )  /  x ]_ B ) )
256251, 255ax-mp 5 . . . . . . . 8  |-  ( ( y  e.  _V  |->  ( ( H `  y
)  -  [_ y  /  x ]_ B ) ) `  ( m  +  1 ) )  =  ( ( H `
 ( m  + 
1 ) )  -  [_ ( m  +  1 )  /  x ]_ B )
257250, 246, 2563brtr4g 4479 . . . . . . 7  |-  ( ( ( ph  /\  (
( |_ `  X
)  +  1 )  <_  Y )  /\  m  e.  ( (
( |_ `  X
)  +  1 ) ... ( ( |_
`  Y )  - 
1 ) ) )  ->  ( ( y  e.  _V  |->  ( ( H `  y )  -  [_ y  /  x ]_ B ) ) `
 m )  <_ 
( ( y  e. 
_V  |->  ( ( H `
 y )  -  [_ y  /  x ]_ B ) ) `  ( m  +  1
) ) )
258129, 249, 257monoord 12101 . . . . . 6  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( (
y  e.  _V  |->  ( ( H `  y
)  -  [_ y  /  x ]_ B ) ) `  ( ( |_ `  X )  +  1 ) )  <_  ( ( y  e.  _V  |->  ( ( H `  y )  -  [_ y  /  x ]_ B ) ) `
 ( |_ `  Y ) ) )
259 ovex 6307 . . . . . . 7  |-  ( ( |_ `  X )  +  1 )  e. 
_V
260 fveq2 5864 . . . . . . . . 9  |-  ( y  =  ( ( |_
`  X )  +  1 )  ->  ( H `  y )  =  ( H `  ( ( |_ `  X )  +  1 ) ) )
261 csbeq1 3438 . . . . . . . . 9  |-  ( y  =  ( ( |_
`  X )  +  1 )  ->  [_ y  /  x ]_ B  = 
[_ ( ( |_
`  X )  +  1 )  /  x ]_ B )
262260, 261oveq12d 6300 . . . . . . . 8  |-  ( y  =  ( ( |_
`  X )  +  1 )  ->  (
( H `  y
)  -  [_ y  /  x ]_ B )  =  ( ( H `
 ( ( |_
`  X )  +  1 ) )  -  [_ ( ( |_ `  X )  +  1 )  /  x ]_ B ) )
263262, 243, 244fvmpt3i 5952 . . . . . . 7  |-  ( ( ( |_ `  X
)  +  1 )  e.  _V  ->  (
( y  e.  _V  |->  ( ( H `  y )  -  [_ y  /  x ]_ B
) ) `  (
( |_ `  X
)  +  1 ) )  =  ( ( H `  ( ( |_ `  X )  +  1 ) )  -  [_ ( ( |_ `  X )  +  1 )  /  x ]_ B ) )
264259, 263ax-mp 5 . . . . . 6  |-  ( ( y  e.  _V  |->  ( ( H `  y
)  -  [_ y  /  x ]_ B ) ) `  ( ( |_ `  X )  +  1 ) )  =  ( ( H `
 ( ( |_
`  X )  +  1 ) )  -  [_ ( ( |_ `  X )  +  1 )  /  x ]_ B )
265 fvex 5874 . . . . . . 7  |-  ( |_
`  Y )  e. 
_V
266 fveq2 5864 . . . . . . . . 9  |-  ( y  =  ( |_ `  Y )  ->  ( H `  y )  =  ( H `  ( |_ `  Y ) ) )
267 csbeq1 3438 . . . . . . . . 9  |-  ( y  =  ( |_ `  Y )  ->  [_ y  /  x ]_ B  = 
[_ ( |_ `  Y )  /  x ]_ B )
268266, 267oveq12d 6300 . . . . . . . 8  |-  ( y  =  ( |_ `  Y )  ->  (
( H `  y
)  -  [_ y  /  x ]_ B )  =  ( ( H `
 ( |_ `  Y ) )  -  [_ ( |_ `  Y
)  /  x ]_ B ) )
269268, 243, 244fvmpt3i 5952 . . . . . . 7  |-  ( ( |_ `  Y )  e.  _V  ->  (
( y  e.  _V  |->  ( ( H `  y )  -  [_ y  /  x ]_ B
) ) `  ( |_ `  Y ) )  =  ( ( H `
 ( |_ `  Y ) )  -  [_ ( |_ `  Y
)  /  x ]_ B ) )
270265, 269ax-mp 5 . . . . . 6  |-  ( ( y  e.  _V  |->  ( ( H `  y
)  -  [_ y  /  x ]_ B ) ) `  ( |_
`  Y ) )  =  ( ( H `
 ( |_ `  Y ) )  -  [_ ( |_ `  Y
)  /  x ]_ B )
271258, 264, 2703brtr3g 4478 . . . . 5  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( H `  ( ( |_ `  X )  +  1 ) )  -  [_ ( ( |_ `  X )  +  1 )  /  x ]_ B )  <_  (
( H `  ( |_ `  Y ) )  -  [_ ( |_
`  Y )  /  x ]_ B ) )
272222, 237, 227, 238, 271letrd 9734 . . . 4  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( H `  X )  -  [_ X  /  x ]_ B )  <_  (
( H `  ( |_ `  Y ) )  -  [_ ( |_
`  Y )  /  x ]_ B ) )
273119simprd 463 . . . 4  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( H `  ( |_ `  Y ) )  -  [_ ( |_ `  Y
)  /  x ]_ B )  <_  (
( H `  Y
)  -  [_ Y  /  x ]_ B ) )
274222, 227, 232, 272, 273letrd 9734 . . 3  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( H `  X )  -  [_ X  /  x ]_ B )  <_  (
( H `  Y
)  -  [_ Y  /  x ]_ B ) )
275208, 274jca 532 . 2  |-  ( (
ph  /\  ( ( |_ `  X )  +  1 )  <_  Y
)  ->  ( ( H `  Y )  <_  ( H `  X
)  /\  ( ( H `  X )  -  [_ X  /  x ]_ B )  <_  (
( H `  Y
)  -  [_ Y  /  x ]_ B ) ) )
2765, 10, 43, 275lecasei 9686 1  |-  ( ph  ->  ( ( H `  Y )  <_  ( H `  X )  /\  ( ( H `  X )  -  [_ X  /  x ]_ B
)  <_  ( ( H `  Y )  -  [_ Y  /  x ]_ B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113   [_csb 3435    C_ wss 3476   class class class wbr 4447    |-> cmpt 4505   -->wf 5582   ` cfv 5586  (class class class)co 6282   RRcr 9487   1c1 9489    + caddc 9491    x. cmul 9493   +oocpnf 9621   RR*cxr 9623    < clt 9624    <_ cle 9625    - cmin 9801   ZZcz 10860   ZZ>=cuz 11078   (,)cioo 11525   ...cfz 11668   |_cfl 11891   sum_csu 13467    _D cdv 22002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-clim 13270  df-sum 13468  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-hom 14575  df-cco 14576  df-rest 14674  df-topn 14675  df-0g 14693  df-gsum 14694  df-topgen 14695  df-pt 14696  df-prds 14699  df-xrs 14753  df-qtop 14758  df-imas 14759  df-xps 14761  df-mre 14837  df-mrc 14838  df-acs 14840  df-mnd 15728  df-submnd 15778  df-mulg 15861  df-cntz 16150  df-cmn 16596  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-fbas 18187  df-fg 18188  df-cnfld 18192  df-top 19166  df-bases 19168  df-topon 19169  df-topsp 19170  df-cld 19286  df-ntr 19287  df-cls 19288  df-nei 19365  df-lp 19403  df-perf 19404  df-cn 19494  df-cnp 19495  df-haus 19582  df-cmp 19653  df-tx 19798  df-hmeo 19991  df-fil 20082  df-fm 20174  df-flim 20175  df-flf 20176  df-xms 20558  df-ms 20559  df-tms 20560  df-cncf 21117  df-limc 22005  df-dv 22006
This theorem is referenced by:  dvfsumlem4  22165  dvfsum2  22170
  Copyright terms: Public domain W3C validator