MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem1 Structured version   Unicode version

Theorem dvfsumlem1 21501
Description: Lemma for dvfsumrlim 21506. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
dvfsum.s  |-  S  =  ( T (,) +oo )
dvfsum.z  |-  Z  =  ( ZZ>= `  M )
dvfsum.m  |-  ( ph  ->  M  e.  ZZ )
dvfsum.d  |-  ( ph  ->  D  e.  RR )
dvfsum.md  |-  ( ph  ->  M  <_  ( D  +  1 ) )
dvfsum.t  |-  ( ph  ->  T  e.  RR )
dvfsum.a  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
dvfsum.b1  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  V )
dvfsum.b2  |-  ( (
ph  /\  x  e.  Z )  ->  B  e.  RR )
dvfsum.b3  |-  ( ph  ->  ( RR  _D  (
x  e.  S  |->  A ) )  =  ( x  e.  S  |->  B ) )
dvfsum.c  |-  ( x  =  k  ->  B  =  C )
dvfsum.u  |-  ( ph  ->  U  e.  RR* )
dvfsum.l  |-  ( (
ph  /\  ( x  e.  S  /\  k  e.  S )  /\  ( D  <_  x  /\  x  <_  k  /\  k  <_  U ) )  ->  C  <_  B )
dvfsum.h  |-  H  =  ( x  e.  S  |->  ( ( ( x  -  ( |_ `  x ) )  x.  B )  +  (
sum_ k  e.  ( M ... ( |_
`  x ) ) C  -  A ) ) )
dvfsumlem1.1  |-  ( ph  ->  X  e.  S )
dvfsumlem1.2  |-  ( ph  ->  Y  e.  S )
dvfsumlem1.3  |-  ( ph  ->  D  <_  X )
dvfsumlem1.4  |-  ( ph  ->  X  <_  Y )
dvfsumlem1.5  |-  ( ph  ->  Y  <_  U )
dvfsumlem1.6  |-  ( ph  ->  Y  <_  ( ( |_ `  X )  +  1 ) )
Assertion
Ref Expression
dvfsumlem1  |-  ( ph  ->  ( H `  Y
)  =  ( ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A )  + 
sum_ k  e.  ( M ... ( |_
`  X ) ) C ) )
Distinct variable groups:    B, k    x, C    x, k, D    ph, k, x    S, k, x    k, M, x   
x, T    k, Y, x    x, Z    U, k, x    k, X, x
Allowed substitution hints:    A( x, k)    B( x)    C( k)    T( k)    H( x, k)    V( x, k)    Z( k)

Proof of Theorem dvfsumlem1
StepHypRef Expression
1 dvfsum.s . . . . . . . . . 10  |-  S  =  ( T (,) +oo )
2 ioossre 11360 . . . . . . . . . 10  |-  ( T (,) +oo )  C_  RR
31, 2eqsstri 3389 . . . . . . . . 9  |-  S  C_  RR
4 dvfsumlem1.2 . . . . . . . . 9  |-  ( ph  ->  Y  e.  S )
53, 4sseldi 3357 . . . . . . . 8  |-  ( ph  ->  Y  e.  RR )
6 dvfsumlem1.1 . . . . . . . . . 10  |-  ( ph  ->  X  e.  S )
73, 6sseldi 3357 . . . . . . . . 9  |-  ( ph  ->  X  e.  RR )
87flcld 11651 . . . . . . . 8  |-  ( ph  ->  ( |_ `  X
)  e.  ZZ )
9 reflcl 11649 . . . . . . . . . 10  |-  ( X  e.  RR  ->  ( |_ `  X )  e.  RR )
107, 9syl 16 . . . . . . . . 9  |-  ( ph  ->  ( |_ `  X
)  e.  RR )
11 flle 11652 . . . . . . . . . 10  |-  ( X  e.  RR  ->  ( |_ `  X )  <_  X )
127, 11syl 16 . . . . . . . . 9  |-  ( ph  ->  ( |_ `  X
)  <_  X )
13 dvfsumlem1.4 . . . . . . . . 9  |-  ( ph  ->  X  <_  Y )
1410, 7, 5, 12, 13letrd 9531 . . . . . . . 8  |-  ( ph  ->  ( |_ `  X
)  <_  Y )
15 flbi 11667 . . . . . . . . 9  |-  ( ( Y  e.  RR  /\  ( |_ `  X )  e.  ZZ )  -> 
( ( |_ `  Y )  =  ( |_ `  X )  <-> 
( ( |_ `  X )  <_  Y  /\  Y  <  ( ( |_ `  X )  +  1 ) ) ) )
1615baibd 900 . . . . . . . 8  |-  ( ( ( Y  e.  RR  /\  ( |_ `  X
)  e.  ZZ )  /\  ( |_ `  X )  <_  Y
)  ->  ( ( |_ `  Y )  =  ( |_ `  X
)  <->  Y  <  ( ( |_ `  X )  +  1 ) ) )
175, 8, 14, 16syl21anc 1217 . . . . . . 7  |-  ( ph  ->  ( ( |_ `  Y )  =  ( |_ `  X )  <-> 
Y  <  ( ( |_ `  X )  +  1 ) ) )
1817biimpar 485 . . . . . 6  |-  ( (
ph  /\  Y  <  ( ( |_ `  X
)  +  1 ) )  ->  ( |_ `  Y )  =  ( |_ `  X ) )
1918oveq2d 6110 . . . . 5  |-  ( (
ph  /\  Y  <  ( ( |_ `  X
)  +  1 ) )  ->  ( Y  -  ( |_ `  Y ) )  =  ( Y  -  ( |_ `  X ) ) )
2019oveq1d 6109 . . . 4  |-  ( (
ph  /\  Y  <  ( ( |_ `  X
)  +  1 ) )  ->  ( ( Y  -  ( |_ `  Y ) )  x. 
[_ Y  /  x ]_ B )  =  ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B ) )
2118oveq2d 6110 . . . . . 6  |-  ( (
ph  /\  Y  <  ( ( |_ `  X
)  +  1 ) )  ->  ( M ... ( |_ `  Y
) )  =  ( M ... ( |_
`  X ) ) )
2221sumeq1d 13181 . . . . 5  |-  ( (
ph  /\  Y  <  ( ( |_ `  X
)  +  1 ) )  ->  sum_ k  e.  ( M ... ( |_ `  Y ) ) C  =  sum_ k  e.  ( M ... ( |_ `  X ) ) C )
2322oveq1d 6109 . . . 4  |-  ( (
ph  /\  Y  <  ( ( |_ `  X
)  +  1 ) )  ->  ( sum_ k  e.  ( M ... ( |_ `  Y
) ) C  -  [_ Y  /  x ]_ A )  =  (
sum_ k  e.  ( M ... ( |_
`  X ) ) C  -  [_ Y  /  x ]_ A ) )
2420, 23oveq12d 6112 . . 3  |-  ( (
ph  /\  Y  <  ( ( |_ `  X
)  +  1 ) )  ->  ( (
( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A ) )  =  ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  X ) ) C  -  [_ Y  /  x ]_ A ) ) )
25 simpr 461 . . . . . . . . . . 11  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  Y  =  ( ( |_
`  X )  +  1 ) )
267adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  X  e.  RR )
2726flcld 11651 . . . . . . . . . . . 12  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  ( |_ `  X )  e.  ZZ )
2827peano2zd 10753 . . . . . . . . . . 11  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  (
( |_ `  X
)  +  1 )  e.  ZZ )
2925, 28eqeltrd 2517 . . . . . . . . . 10  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  Y  e.  ZZ )
30 flid 11660 . . . . . . . . . 10  |-  ( Y  e.  ZZ  ->  ( |_ `  Y )  =  Y )
3129, 30syl 16 . . . . . . . . 9  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  ( |_ `  Y )  =  Y )
3231, 25eqtrd 2475 . . . . . . . 8  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  ( |_ `  Y )  =  ( ( |_ `  X )  +  1 ) )
3332oveq2d 6110 . . . . . . 7  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  ( Y  -  ( |_ `  Y ) )  =  ( Y  -  (
( |_ `  X
)  +  1 ) ) )
3433oveq1d 6109 . . . . . 6  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  (
( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )  =  ( ( Y  -  ( ( |_ `  X )  +  1 ) )  x.  [_ Y  /  x ]_ B
) )
355recnd 9415 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  CC )
3610recnd 9415 . . . . . . . . . 10  |-  ( ph  ->  ( |_ `  X
)  e.  CC )
3735, 36subcld 9722 . . . . . . . . 9  |-  ( ph  ->  ( Y  -  ( |_ `  X ) )  e.  CC )
38 1cnd 9405 . . . . . . . . 9  |-  ( ph  ->  1  e.  CC )
393a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  S  C_  RR )
40 dvfsum.a . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
41 dvfsum.b1 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  V )
42 dvfsum.b3 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
x  e.  S  |->  A ) )  =  ( x  e.  S  |->  B ) )
4339, 40, 41, 42dvmptrecl 21499 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  RR )
4443recnd 9415 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  CC )
4544ralrimiva 2802 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  S  B  e.  CC )
46 nfcsb1v 3307 . . . . . . . . . . . 12  |-  F/_ x [_ Y  /  x ]_ B
4746nfel1 2592 . . . . . . . . . . 11  |-  F/ x [_ Y  /  x ]_ B  e.  CC
48 csbeq1a 3300 . . . . . . . . . . . 12  |-  ( x  =  Y  ->  B  =  [_ Y  /  x ]_ B )
4948eleq1d 2509 . . . . . . . . . . 11  |-  ( x  =  Y  ->  ( B  e.  CC  <->  [_ Y  /  x ]_ B  e.  CC ) )
5047, 49rspc 3070 . . . . . . . . . 10  |-  ( Y  e.  S  ->  ( A. x  e.  S  B  e.  CC  ->  [_ Y  /  x ]_ B  e.  CC )
)
514, 45, 50sylc 60 . . . . . . . . 9  |-  ( ph  ->  [_ Y  /  x ]_ B  e.  CC )
5237, 38, 51subdird 9804 . . . . . . . 8  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  - 
1 )  x.  [_ Y  /  x ]_ B
)  =  ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  ( 1  x.  [_ Y  /  x ]_ B
) ) )
5335, 36, 38subsub4d 9753 . . . . . . . . 9  |-  ( ph  ->  ( ( Y  -  ( |_ `  X ) )  -  1 )  =  ( Y  -  ( ( |_ `  X )  +  1 ) ) )
5453oveq1d 6109 . . . . . . . 8  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  - 
1 )  x.  [_ Y  /  x ]_ B
)  =  ( ( Y  -  ( ( |_ `  X )  +  1 ) )  x.  [_ Y  /  x ]_ B ) )
5551mulid2d 9407 . . . . . . . . 9  |-  ( ph  ->  ( 1  x.  [_ Y  /  x ]_ B
)  =  [_ Y  /  x ]_ B )
5655oveq2d 6110 . . . . . . . 8  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  x. 
[_ Y  /  x ]_ B )  -  (
1  x.  [_ Y  /  x ]_ B ) )  =  ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ B ) )
5752, 54, 563eqtr3d 2483 . . . . . . 7  |-  ( ph  ->  ( ( Y  -  ( ( |_ `  X )  +  1 ) )  x.  [_ Y  /  x ]_ B
)  =  ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ B ) )
5857adantr 465 . . . . . 6  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  (
( Y  -  (
( |_ `  X
)  +  1 ) )  x.  [_ Y  /  x ]_ B )  =  ( ( ( Y  -  ( |_
`  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ B ) )
5934, 58eqtrd 2475 . . . . 5  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  (
( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )  =  ( ( ( Y  -  ( |_ `  X ) )  x. 
[_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ B
) )
60 dvfsum.m . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ZZ )
618peano2zd 10753 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( |_ `  X )  +  1 )  e.  ZZ )
6260zred 10750 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  RR )
63 peano2rem 9678 . . . . . . . . . . . . . . . 16  |-  ( M  e.  RR  ->  ( M  -  1 )  e.  RR )
6462, 63syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M  -  1 )  e.  RR )
65 dvfsum.d . . . . . . . . . . . . . . 15  |-  ( ph  ->  D  e.  RR )
66 dvfsum.md . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  <_  ( D  +  1 ) )
67 1red 9404 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  1  e.  RR )
6862, 67, 65lesubaddd 9939 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( M  - 
1 )  <_  D  <->  M  <_  ( D  + 
1 ) ) )
6966, 68mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M  -  1 )  <_  D )
70 dvfsumlem1.3 . . . . . . . . . . . . . . 15  |-  ( ph  ->  D  <_  X )
7164, 65, 7, 69, 70letrd 9531 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  -  1 )  <_  X )
72 peano2zm 10691 . . . . . . . . . . . . . . . 16  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
7360, 72syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
74 flge 11658 . . . . . . . . . . . . . . 15  |-  ( ( X  e.  RR  /\  ( M  -  1
)  e.  ZZ )  ->  ( ( M  -  1 )  <_  X 
<->  ( M  -  1 )  <_  ( |_ `  X ) ) )
757, 73, 74syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( M  - 
1 )  <_  X  <->  ( M  -  1 )  <_  ( |_ `  X ) ) )
7671, 75mpbid 210 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M  -  1 )  <_  ( |_ `  X ) )
7762, 67, 10lesubaddd 9939 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( M  - 
1 )  <_  ( |_ `  X )  <->  M  <_  ( ( |_ `  X
)  +  1 ) ) )
7876, 77mpbid 210 . . . . . . . . . . . 12  |-  ( ph  ->  M  <_  ( ( |_ `  X )  +  1 ) )
79 eluz2 10870 . . . . . . . . . . . 12  |-  ( ( ( |_ `  X
)  +  1 )  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  ( ( |_ `  X )  +  1 )  e.  ZZ  /\  M  <_ 
( ( |_ `  X )  +  1 ) ) )
8060, 61, 78, 79syl3anbrc 1172 . . . . . . . . . . 11  |-  ( ph  ->  ( ( |_ `  X )  +  1 )  e.  ( ZZ>= `  M ) )
81 dvfsum.b2 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  Z )  ->  B  e.  RR )
8281recnd 9415 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  Z )  ->  B  e.  CC )
8382ralrimiva 2802 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  Z  B  e.  CC )
84 elfzuz 11452 . . . . . . . . . . . . 13  |-  ( k  e.  ( M ... ( ( |_ `  X )  +  1 ) )  ->  k  e.  ( ZZ>= `  M )
)
85 dvfsum.z . . . . . . . . . . . . 13  |-  Z  =  ( ZZ>= `  M )
8684, 85syl6eleqr 2534 . . . . . . . . . . . 12  |-  ( k  e.  ( M ... ( ( |_ `  X )  +  1 ) )  ->  k  e.  Z )
87 dvfsum.c . . . . . . . . . . . . . 14  |-  ( x  =  k  ->  B  =  C )
8887eleq1d 2509 . . . . . . . . . . . . 13  |-  ( x  =  k  ->  ( B  e.  CC  <->  C  e.  CC ) )
8988rspccva 3075 . . . . . . . . . . . 12  |-  ( ( A. x  e.  Z  B  e.  CC  /\  k  e.  Z )  ->  C  e.  CC )
9083, 86, 89syl2an 477 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M ... ( ( |_ `  X )  +  1 ) ) )  ->  C  e.  CC )
91 ovex 6119 . . . . . . . . . . . . . 14  |-  ( ( |_ `  X )  +  1 )  e. 
_V
9291a1i 11 . . . . . . . . . . . . 13  |-  ( k  =  ( ( |_
`  X )  +  1 )  ->  (
( |_ `  X
)  +  1 )  e.  _V )
93 eqeq2 2452 . . . . . . . . . . . . . . 15  |-  ( k  =  ( ( |_
`  X )  +  1 )  ->  (
x  =  k  <->  x  =  ( ( |_ `  X )  +  1 ) ) )
9493biimpar 485 . . . . . . . . . . . . . 14  |-  ( ( k  =  ( ( |_ `  X )  +  1 )  /\  x  =  ( ( |_ `  X )  +  1 ) )  ->  x  =  k )
9594, 87syl 16 . . . . . . . . . . . . 13  |-  ( ( k  =  ( ( |_ `  X )  +  1 )  /\  x  =  ( ( |_ `  X )  +  1 ) )  ->  B  =  C )
9692, 95csbied 3317 . . . . . . . . . . . 12  |-  ( k  =  ( ( |_
`  X )  +  1 )  ->  [_ (
( |_ `  X
)  +  1 )  /  x ]_ B  =  C )
9796eqcomd 2448 . . . . . . . . . . 11  |-  ( k  =  ( ( |_
`  X )  +  1 )  ->  C  =  [_ ( ( |_
`  X )  +  1 )  /  x ]_ B )
9880, 90, 97fsumm1 13223 . . . . . . . . . 10  |-  ( ph  -> 
sum_ k  e.  ( M ... ( ( |_ `  X )  +  1 ) ) C  =  ( sum_ k  e.  ( M ... ( ( ( |_
`  X )  +  1 )  -  1 ) ) C  +  [_ ( ( |_ `  X )  +  1 )  /  x ]_ B ) )
99 ax-1cn 9343 . . . . . . . . . . . . . 14  |-  1  e.  CC
100 pncan 9619 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  X
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( |_
`  X )  +  1 )  -  1 )  =  ( |_
`  X ) )
10136, 99, 100sylancl 662 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( |_
`  X )  +  1 )  -  1 )  =  ( |_
`  X ) )
102101oveq2d 6110 . . . . . . . . . . . 12  |-  ( ph  ->  ( M ... (
( ( |_ `  X )  +  1 )  -  1 ) )  =  ( M ... ( |_ `  X ) ) )
103102sumeq1d 13181 . . . . . . . . . . 11  |-  ( ph  -> 
sum_ k  e.  ( M ... ( ( ( |_ `  X
)  +  1 )  -  1 ) ) C  =  sum_ k  e.  ( M ... ( |_ `  X ) ) C )
104103oveq1d 6109 . . . . . . . . . 10  |-  ( ph  ->  ( sum_ k  e.  ( M ... ( ( ( |_ `  X
)  +  1 )  -  1 ) ) C  +  [_ (
( |_ `  X
)  +  1 )  /  x ]_ B
)  =  ( sum_ k  e.  ( M ... ( |_ `  X
) ) C  +  [_ ( ( |_ `  X )  +  1 )  /  x ]_ B ) )
10598, 104eqtrd 2475 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  ( M ... ( ( |_ `  X )  +  1 ) ) C  =  ( sum_ k  e.  ( M ... ( |_ `  X
) ) C  +  [_ ( ( |_ `  X )  +  1 )  /  x ]_ B ) )
106105adantr 465 . . . . . . . 8  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  sum_ k  e.  ( M ... (
( |_ `  X
)  +  1 ) ) C  =  (
sum_ k  e.  ( M ... ( |_
`  X ) ) C  +  [_ (
( |_ `  X
)  +  1 )  /  x ]_ B
) )
10732oveq2d 6110 . . . . . . . . 9  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  ( M ... ( |_ `  Y ) )  =  ( M ... (
( |_ `  X
)  +  1 ) ) )
108107sumeq1d 13181 . . . . . . . 8  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  sum_ k  e.  ( M ... ( |_ `  Y ) ) C  =  sum_ k  e.  ( M ... (
( |_ `  X
)  +  1 ) ) C )
10925csbeq1d 3298 . . . . . . . . 9  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  [_ Y  /  x ]_ B  = 
[_ ( ( |_
`  X )  +  1 )  /  x ]_ B )
110109oveq2d 6110 . . . . . . . 8  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  ( sum_ k  e.  ( M ... ( |_ `  X ) ) C  +  [_ Y  /  x ]_ B )  =  ( sum_ k  e.  ( M ... ( |_
`  X ) ) C  +  [_ (
( |_ `  X
)  +  1 )  /  x ]_ B
) )
111106, 108, 1103eqtr4d 2485 . . . . . . 7  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  sum_ k  e.  ( M ... ( |_ `  Y ) ) C  =  ( sum_ k  e.  ( M ... ( |_ `  X
) ) C  +  [_ Y  /  x ]_ B ) )
112111oveq1d 6109 . . . . . 6  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  ( sum_ k  e.  ( M ... ( |_ `  Y ) ) C  -  [_ Y  /  x ]_ A )  =  ( ( sum_ k  e.  ( M ... ( |_ `  X ) ) C  +  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A ) )
113 fzfid 11798 . . . . . . . . 9  |-  ( ph  ->  ( M ... ( |_ `  X ) )  e.  Fin )
114 elfzuz 11452 . . . . . . . . . . 11  |-  ( k  e.  ( M ... ( |_ `  X ) )  ->  k  e.  ( ZZ>= `  M )
)
115114, 85syl6eleqr 2534 . . . . . . . . . 10  |-  ( k  e.  ( M ... ( |_ `  X ) )  ->  k  e.  Z )
11683, 115, 89syl2an 477 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M ... ( |_
`  X ) ) )  ->  C  e.  CC )
117113, 116fsumcl 13213 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( M ... ( |_
`  X ) ) C  e.  CC )
11840recnd 9415 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  CC )
119118ralrimiva 2802 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  S  A  e.  CC )
120 nfcsb1v 3307 . . . . . . . . . . 11  |-  F/_ x [_ Y  /  x ]_ A
121120nfel1 2592 . . . . . . . . . 10  |-  F/ x [_ Y  /  x ]_ A  e.  CC
122 csbeq1a 3300 . . . . . . . . . . 11  |-  ( x  =  Y  ->  A  =  [_ Y  /  x ]_ A )
123122eleq1d 2509 . . . . . . . . . 10  |-  ( x  =  Y  ->  ( A  e.  CC  <->  [_ Y  /  x ]_ A  e.  CC ) )
124121, 123rspc 3070 . . . . . . . . 9  |-  ( Y  e.  S  ->  ( A. x  e.  S  A  e.  CC  ->  [_ Y  /  x ]_ A  e.  CC )
)
1254, 119, 124sylc 60 . . . . . . . 8  |-  ( ph  ->  [_ Y  /  x ]_ A  e.  CC )
126117, 51, 125addsubd 9743 . . . . . . 7  |-  ( ph  ->  ( ( sum_ k  e.  ( M ... ( |_ `  X ) ) C  +  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A )  =  ( ( sum_ k  e.  ( M ... ( |_ `  X ) ) C  -  [_ Y  /  x ]_ A )  +  [_ Y  /  x ]_ B ) )
127126adantr 465 . . . . . 6  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  (
( sum_ k  e.  ( M ... ( |_
`  X ) ) C  +  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A )  =  ( ( sum_ k  e.  ( M ... ( |_ `  X ) ) C  -  [_ Y  /  x ]_ A )  +  [_ Y  /  x ]_ B ) )
128112, 127eqtrd 2475 . . . . 5  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  ( sum_ k  e.  ( M ... ( |_ `  Y ) ) C  -  [_ Y  /  x ]_ A )  =  ( ( sum_ k  e.  ( M ... ( |_ `  X ) ) C  -  [_ Y  /  x ]_ A )  +  [_ Y  /  x ]_ B ) )
12959, 128oveq12d 6112 . . . 4  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  (
( ( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_ `  Y ) ) C  -  [_ Y  /  x ]_ A ) )  =  ( ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ B )  +  ( ( sum_ k  e.  ( M ... ( |_ `  X ) ) C  -  [_ Y  /  x ]_ A )  +  [_ Y  /  x ]_ B ) ) )
13037, 51mulcld 9409 . . . . . 6  |-  ( ph  ->  ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  e.  CC )
131130adantr 465 . . . . 5  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  (
( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  e.  CC )
13251adantr 465 . . . . 5  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  [_ Y  /  x ]_ B  e.  CC )
133117, 125subcld 9722 . . . . . 6  |-  ( ph  ->  ( sum_ k  e.  ( M ... ( |_
`  X ) ) C  -  [_ Y  /  x ]_ A )  e.  CC )
134133adantr 465 . . . . 5  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  ( sum_ k  e.  ( M ... ( |_ `  X ) ) C  -  [_ Y  /  x ]_ A )  e.  CC )
135131, 132, 134nppcan3d 9749 . . . 4  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  (
( ( ( Y  -  ( |_ `  X ) )  x. 
[_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ B
)  +  ( (
sum_ k  e.  ( M ... ( |_
`  X ) ) C  -  [_ Y  /  x ]_ A )  +  [_ Y  /  x ]_ B ) )  =  ( ( ( Y  -  ( |_
`  X ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  X ) ) C  -  [_ Y  /  x ]_ A ) ) )
136129, 135eqtrd 2475 . . 3  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  (
( ( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_ `  Y ) ) C  -  [_ Y  /  x ]_ A ) )  =  ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  X ) ) C  -  [_ Y  /  x ]_ A ) ) )
137 dvfsumlem1.6 . . . 4  |-  ( ph  ->  Y  <_  ( ( |_ `  X )  +  1 ) )
138 peano2re 9545 . . . . . 6  |-  ( ( |_ `  X )  e.  RR  ->  (
( |_ `  X
)  +  1 )  e.  RR )
13910, 138syl 16 . . . . 5  |-  ( ph  ->  ( ( |_ `  X )  +  1 )  e.  RR )
1405, 139leloed 9520 . . . 4  |-  ( ph  ->  ( Y  <_  (
( |_ `  X
)  +  1 )  <-> 
( Y  <  (
( |_ `  X
)  +  1 )  \/  Y  =  ( ( |_ `  X
)  +  1 ) ) ) )
141137, 140mpbid 210 . . 3  |-  ( ph  ->  ( Y  <  (
( |_ `  X
)  +  1 )  \/  Y  =  ( ( |_ `  X
)  +  1 ) ) )
14224, 136, 141mpjaodan 784 . 2  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  Y ) )  x. 
[_ Y  /  x ]_ B )  +  (
sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A ) )  =  ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  X ) ) C  -  [_ Y  /  x ]_ A ) ) )
143 ovex 6119 . . 3  |-  ( ( ( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A ) )  e.  _V
144 nfcv 2582 . . . 4  |-  F/_ x Y
145 nfcv 2582 . . . . . 6  |-  F/_ x
( Y  -  ( |_ `  Y ) )
146 nfcv 2582 . . . . . 6  |-  F/_ x  x.
147145, 146, 46nfov 6117 . . . . 5  |-  F/_ x
( ( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )
148 nfcv 2582 . . . . 5  |-  F/_ x  +
149 nfcv 2582 . . . . . 6  |-  F/_ x sum_ k  e.  ( M ... ( |_ `  Y ) ) C
150 nfcv 2582 . . . . . 6  |-  F/_ x  -
151149, 150, 120nfov 6117 . . . . 5  |-  F/_ x
( sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A )
152147, 148, 151nfov 6117 . . . 4  |-  F/_ x
( ( ( Y  -  ( |_ `  Y ) )  x. 
[_ Y  /  x ]_ B )  +  (
sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A ) )
153 id 22 . . . . . . 7  |-  ( x  =  Y  ->  x  =  Y )
154 fveq2 5694 . . . . . . 7  |-  ( x  =  Y  ->  ( |_ `  x )  =  ( |_ `  Y
) )
155153, 154oveq12d 6112 . . . . . 6  |-  ( x  =  Y  ->  (
x  -  ( |_
`  x ) )  =  ( Y  -  ( |_ `  Y ) ) )
156155, 48oveq12d 6112 . . . . 5  |-  ( x  =  Y  ->  (
( x  -  ( |_ `  x ) )  x.  B )  =  ( ( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B ) )
157154oveq2d 6110 . . . . . . 7  |-  ( x  =  Y  ->  ( M ... ( |_ `  x ) )  =  ( M ... ( |_ `  Y ) ) )
158157sumeq1d 13181 . . . . . 6  |-  ( x  =  Y  ->  sum_ k  e.  ( M ... ( |_ `  x ) ) C  =  sum_ k  e.  ( M ... ( |_ `  Y ) ) C )
159158, 122oveq12d 6112 . . . . 5  |-  ( x  =  Y  ->  ( sum_ k  e.  ( M ... ( |_ `  x ) ) C  -  A )  =  ( sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A ) )
160156, 159oveq12d 6112 . . . 4  |-  ( x  =  Y  ->  (
( ( x  -  ( |_ `  x ) )  x.  B )  +  ( sum_ k  e.  ( M ... ( |_ `  x ) ) C  -  A ) )  =  ( ( ( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A ) ) )
161 dvfsum.h . . . 4  |-  H  =  ( x  e.  S  |->  ( ( ( x  -  ( |_ `  x ) )  x.  B )  +  (
sum_ k  e.  ( M ... ( |_
`  x ) ) C  -  A ) ) )
162144, 152, 160, 161fvmptf 5793 . . 3  |-  ( ( Y  e.  S  /\  ( ( ( Y  -  ( |_ `  Y ) )  x. 
[_ Y  /  x ]_ B )  +  (
sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A ) )  e.  _V )  ->  ( H `  Y
)  =  ( ( ( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A ) ) )
1634, 143, 162sylancl 662 . 2  |-  ( ph  ->  ( H `  Y
)  =  ( ( ( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A ) ) )
164130, 125, 117subadd23d 9744 . 2  |-  ( ph  ->  ( ( ( ( Y  -  ( |_
`  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A )  +  sum_ k  e.  ( M ... ( |_ `  X
) ) C )  =  ( ( ( Y  -  ( |_
`  X ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  X ) ) C  -  [_ Y  /  x ]_ A ) ) )
165142, 163, 1643eqtr4d 2485 1  |-  ( ph  ->  ( H `  Y
)  =  ( ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A )  + 
sum_ k  e.  ( M ... ( |_
`  X ) ) C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2718   _Vcvv 2975   [_csb 3291    C_ wss 3331   class class class wbr 4295    e. cmpt 4353   ` cfv 5421  (class class class)co 6094   CCcc 9283   RRcr 9284   1c1 9286    + caddc 9288    x. cmul 9290   +oocpnf 9418   RR*cxr 9420    < clt 9421    <_ cle 9422    - cmin 9598   ZZcz 10649   ZZ>=cuz 10864   (,)cioo 11303   ...cfz 11440   |_cfl 11643   sum_csu 13166    _D cdv 21341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-iin 4177  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-om 6480  df-1st 6580  df-2nd 6581  df-recs 6835  df-rdg 6869  df-1o 6923  df-oadd 6927  df-er 7104  df-map 7219  df-pm 7220  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-fi 7664  df-sup 7694  df-oi 7727  df-card 8112  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-4 10385  df-5 10386  df-6 10387  df-7 10388  df-8 10389  df-9 10390  df-10 10391  df-n0 10583  df-z 10650  df-dec 10759  df-uz 10865  df-q 10957  df-rp 10995  df-xneg 11092  df-xadd 11093  df-xmul 11094  df-ioo 11307  df-icc 11310  df-fz 11441  df-fzo 11552  df-fl 11645  df-seq 11810  df-exp 11869  df-hash 12107  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-clim 12969  df-sum 13167  df-struct 14179  df-ndx 14180  df-slot 14181  df-base 14182  df-plusg 14254  df-mulr 14255  df-starv 14256  df-tset 14260  df-ple 14261  df-ds 14263  df-unif 14264  df-rest 14364  df-topn 14365  df-topgen 14385  df-psmet 17812  df-xmet 17813  df-met 17814  df-bl 17815  df-mopn 17816  df-fbas 17817  df-fg 17818  df-cnfld 17822  df-top 18506  df-bases 18508  df-topon 18509  df-topsp 18510  df-cld 18626  df-ntr 18627  df-cls 18628  df-nei 18705  df-lp 18743  df-perf 18744  df-cn 18834  df-cnp 18835  df-haus 18922  df-fil 19422  df-fm 19514  df-flim 19515  df-flf 19516  df-xms 19898  df-ms 19899  df-cncf 20457  df-limc 21344  df-dv 21345
This theorem is referenced by:  dvfsumlem2  21502
  Copyright terms: Public domain W3C validator