MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem1 Structured version   Unicode version

Theorem dvfsumlem1 22970
Description: Lemma for dvfsumrlim 22975. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
dvfsum.s  |-  S  =  ( T (,) +oo )
dvfsum.z  |-  Z  =  ( ZZ>= `  M )
dvfsum.m  |-  ( ph  ->  M  e.  ZZ )
dvfsum.d  |-  ( ph  ->  D  e.  RR )
dvfsum.md  |-  ( ph  ->  M  <_  ( D  +  1 ) )
dvfsum.t  |-  ( ph  ->  T  e.  RR )
dvfsum.a  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
dvfsum.b1  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  V )
dvfsum.b2  |-  ( (
ph  /\  x  e.  Z )  ->  B  e.  RR )
dvfsum.b3  |-  ( ph  ->  ( RR  _D  (
x  e.  S  |->  A ) )  =  ( x  e.  S  |->  B ) )
dvfsum.c  |-  ( x  =  k  ->  B  =  C )
dvfsum.u  |-  ( ph  ->  U  e.  RR* )
dvfsum.l  |-  ( (
ph  /\  ( x  e.  S  /\  k  e.  S )  /\  ( D  <_  x  /\  x  <_  k  /\  k  <_  U ) )  ->  C  <_  B )
dvfsum.h  |-  H  =  ( x  e.  S  |->  ( ( ( x  -  ( |_ `  x ) )  x.  B )  +  (
sum_ k  e.  ( M ... ( |_
`  x ) ) C  -  A ) ) )
dvfsumlem1.1  |-  ( ph  ->  X  e.  S )
dvfsumlem1.2  |-  ( ph  ->  Y  e.  S )
dvfsumlem1.3  |-  ( ph  ->  D  <_  X )
dvfsumlem1.4  |-  ( ph  ->  X  <_  Y )
dvfsumlem1.5  |-  ( ph  ->  Y  <_  U )
dvfsumlem1.6  |-  ( ph  ->  Y  <_  ( ( |_ `  X )  +  1 ) )
Assertion
Ref Expression
dvfsumlem1  |-  ( ph  ->  ( H `  Y
)  =  ( ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A )  + 
sum_ k  e.  ( M ... ( |_
`  X ) ) C ) )
Distinct variable groups:    B, k    x, C    x, k, D    ph, k, x    S, k, x    k, M, x   
x, T    k, Y, x    x, Z    U, k, x    k, X, x
Allowed substitution hints:    A( x, k)    B( x)    C( k)    T( k)    H( x, k)    V( x, k)    Z( k)

Proof of Theorem dvfsumlem1
StepHypRef Expression
1 dvfsum.s . . . . . . . . . 10  |-  S  =  ( T (,) +oo )
2 ioossre 11698 . . . . . . . . . 10  |-  ( T (,) +oo )  C_  RR
31, 2eqsstri 3495 . . . . . . . . 9  |-  S  C_  RR
4 dvfsumlem1.2 . . . . . . . . 9  |-  ( ph  ->  Y  e.  S )
53, 4sseldi 3463 . . . . . . . 8  |-  ( ph  ->  Y  e.  RR )
6 dvfsumlem1.1 . . . . . . . . . 10  |-  ( ph  ->  X  e.  S )
73, 6sseldi 3463 . . . . . . . . 9  |-  ( ph  ->  X  e.  RR )
87flcld 12035 . . . . . . . 8  |-  ( ph  ->  ( |_ `  X
)  e.  ZZ )
9 reflcl 12033 . . . . . . . . . 10  |-  ( X  e.  RR  ->  ( |_ `  X )  e.  RR )
107, 9syl 17 . . . . . . . . 9  |-  ( ph  ->  ( |_ `  X
)  e.  RR )
11 flle 12036 . . . . . . . . . 10  |-  ( X  e.  RR  ->  ( |_ `  X )  <_  X )
127, 11syl 17 . . . . . . . . 9  |-  ( ph  ->  ( |_ `  X
)  <_  X )
13 dvfsumlem1.4 . . . . . . . . 9  |-  ( ph  ->  X  <_  Y )
1410, 7, 5, 12, 13letrd 9794 . . . . . . . 8  |-  ( ph  ->  ( |_ `  X
)  <_  Y )
15 flbi 12052 . . . . . . . . 9  |-  ( ( Y  e.  RR  /\  ( |_ `  X )  e.  ZZ )  -> 
( ( |_ `  Y )  =  ( |_ `  X )  <-> 
( ( |_ `  X )  <_  Y  /\  Y  <  ( ( |_ `  X )  +  1 ) ) ) )
1615baibd 918 . . . . . . . 8  |-  ( ( ( Y  e.  RR  /\  ( |_ `  X
)  e.  ZZ )  /\  ( |_ `  X )  <_  Y
)  ->  ( ( |_ `  Y )  =  ( |_ `  X
)  <->  Y  <  ( ( |_ `  X )  +  1 ) ) )
175, 8, 14, 16syl21anc 1264 . . . . . . 7  |-  ( ph  ->  ( ( |_ `  Y )  =  ( |_ `  X )  <-> 
Y  <  ( ( |_ `  X )  +  1 ) ) )
1817biimpar 488 . . . . . 6  |-  ( (
ph  /\  Y  <  ( ( |_ `  X
)  +  1 ) )  ->  ( |_ `  Y )  =  ( |_ `  X ) )
1918oveq2d 6319 . . . . 5  |-  ( (
ph  /\  Y  <  ( ( |_ `  X
)  +  1 ) )  ->  ( Y  -  ( |_ `  Y ) )  =  ( Y  -  ( |_ `  X ) ) )
2019oveq1d 6318 . . . 4  |-  ( (
ph  /\  Y  <  ( ( |_ `  X
)  +  1 ) )  ->  ( ( Y  -  ( |_ `  Y ) )  x. 
[_ Y  /  x ]_ B )  =  ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B ) )
2118oveq2d 6319 . . . . . 6  |-  ( (
ph  /\  Y  <  ( ( |_ `  X
)  +  1 ) )  ->  ( M ... ( |_ `  Y
) )  =  ( M ... ( |_
`  X ) ) )
2221sumeq1d 13760 . . . . 5  |-  ( (
ph  /\  Y  <  ( ( |_ `  X
)  +  1 ) )  ->  sum_ k  e.  ( M ... ( |_ `  Y ) ) C  =  sum_ k  e.  ( M ... ( |_ `  X ) ) C )
2322oveq1d 6318 . . . 4  |-  ( (
ph  /\  Y  <  ( ( |_ `  X
)  +  1 ) )  ->  ( sum_ k  e.  ( M ... ( |_ `  Y
) ) C  -  [_ Y  /  x ]_ A )  =  (
sum_ k  e.  ( M ... ( |_
`  X ) ) C  -  [_ Y  /  x ]_ A ) )
2420, 23oveq12d 6321 . . 3  |-  ( (
ph  /\  Y  <  ( ( |_ `  X
)  +  1 ) )  ->  ( (
( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A ) )  =  ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  X ) ) C  -  [_ Y  /  x ]_ A ) ) )
25 simpr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  Y  =  ( ( |_
`  X )  +  1 ) )
267adantr 467 . . . . . . . . . . . . 13  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  X  e.  RR )
2726flcld 12035 . . . . . . . . . . . 12  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  ( |_ `  X )  e.  ZZ )
2827peano2zd 11045 . . . . . . . . . . 11  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  (
( |_ `  X
)  +  1 )  e.  ZZ )
2925, 28eqeltrd 2511 . . . . . . . . . 10  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  Y  e.  ZZ )
30 flid 12045 . . . . . . . . . 10  |-  ( Y  e.  ZZ  ->  ( |_ `  Y )  =  Y )
3129, 30syl 17 . . . . . . . . 9  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  ( |_ `  Y )  =  Y )
3231, 25eqtrd 2464 . . . . . . . 8  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  ( |_ `  Y )  =  ( ( |_ `  X )  +  1 ) )
3332oveq2d 6319 . . . . . . 7  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  ( Y  -  ( |_ `  Y ) )  =  ( Y  -  (
( |_ `  X
)  +  1 ) ) )
3433oveq1d 6318 . . . . . 6  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  (
( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )  =  ( ( Y  -  ( ( |_ `  X )  +  1 ) )  x.  [_ Y  /  x ]_ B
) )
355recnd 9671 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  CC )
3610recnd 9671 . . . . . . . . . 10  |-  ( ph  ->  ( |_ `  X
)  e.  CC )
3735, 36subcld 9988 . . . . . . . . 9  |-  ( ph  ->  ( Y  -  ( |_ `  X ) )  e.  CC )
38 1cnd 9661 . . . . . . . . 9  |-  ( ph  ->  1  e.  CC )
393a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  S  C_  RR )
40 dvfsum.a . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
41 dvfsum.b1 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  V )
42 dvfsum.b3 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
x  e.  S  |->  A ) )  =  ( x  e.  S  |->  B ) )
4339, 40, 41, 42dvmptrecl 22968 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  RR )
4443recnd 9671 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  CC )
4544ralrimiva 2840 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  S  B  e.  CC )
46 nfcsb1v 3412 . . . . . . . . . . . 12  |-  F/_ x [_ Y  /  x ]_ B
4746nfel1 2601 . . . . . . . . . . 11  |-  F/ x [_ Y  /  x ]_ B  e.  CC
48 csbeq1a 3405 . . . . . . . . . . . 12  |-  ( x  =  Y  ->  B  =  [_ Y  /  x ]_ B )
4948eleq1d 2492 . . . . . . . . . . 11  |-  ( x  =  Y  ->  ( B  e.  CC  <->  [_ Y  /  x ]_ B  e.  CC ) )
5047, 49rspc 3177 . . . . . . . . . 10  |-  ( Y  e.  S  ->  ( A. x  e.  S  B  e.  CC  ->  [_ Y  /  x ]_ B  e.  CC )
)
514, 45, 50sylc 63 . . . . . . . . 9  |-  ( ph  ->  [_ Y  /  x ]_ B  e.  CC )
5237, 38, 51subdird 10077 . . . . . . . 8  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  - 
1 )  x.  [_ Y  /  x ]_ B
)  =  ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  ( 1  x.  [_ Y  /  x ]_ B
) ) )
5335, 36, 38subsub4d 10019 . . . . . . . . 9  |-  ( ph  ->  ( ( Y  -  ( |_ `  X ) )  -  1 )  =  ( Y  -  ( ( |_ `  X )  +  1 ) ) )
5453oveq1d 6318 . . . . . . . 8  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  - 
1 )  x.  [_ Y  /  x ]_ B
)  =  ( ( Y  -  ( ( |_ `  X )  +  1 ) )  x.  [_ Y  /  x ]_ B ) )
5551mulid2d 9663 . . . . . . . . 9  |-  ( ph  ->  ( 1  x.  [_ Y  /  x ]_ B
)  =  [_ Y  /  x ]_ B )
5655oveq2d 6319 . . . . . . . 8  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  x. 
[_ Y  /  x ]_ B )  -  (
1  x.  [_ Y  /  x ]_ B ) )  =  ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ B ) )
5752, 54, 563eqtr3d 2472 . . . . . . 7  |-  ( ph  ->  ( ( Y  -  ( ( |_ `  X )  +  1 ) )  x.  [_ Y  /  x ]_ B
)  =  ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ B ) )
5857adantr 467 . . . . . 6  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  (
( Y  -  (
( |_ `  X
)  +  1 ) )  x.  [_ Y  /  x ]_ B )  =  ( ( ( Y  -  ( |_
`  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ B ) )
5934, 58eqtrd 2464 . . . . 5  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  (
( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )  =  ( ( ( Y  -  ( |_ `  X ) )  x. 
[_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ B
) )
60 dvfsum.m . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ZZ )
618peano2zd 11045 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( |_ `  X )  +  1 )  e.  ZZ )
6260zred 11042 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  RR )
63 peano2rem 9943 . . . . . . . . . . . . . . . 16  |-  ( M  e.  RR  ->  ( M  -  1 )  e.  RR )
6462, 63syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M  -  1 )  e.  RR )
65 dvfsum.d . . . . . . . . . . . . . . 15  |-  ( ph  ->  D  e.  RR )
66 dvfsum.md . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  <_  ( D  +  1 ) )
67 1red 9660 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  1  e.  RR )
6862, 67, 65lesubaddd 10212 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( M  - 
1 )  <_  D  <->  M  <_  ( D  + 
1 ) ) )
6966, 68mpbird 236 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M  -  1 )  <_  D )
70 dvfsumlem1.3 . . . . . . . . . . . . . . 15  |-  ( ph  ->  D  <_  X )
7164, 65, 7, 69, 70letrd 9794 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  -  1 )  <_  X )
72 peano2zm 10982 . . . . . . . . . . . . . . . 16  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
7360, 72syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
74 flge 12042 . . . . . . . . . . . . . . 15  |-  ( ( X  e.  RR  /\  ( M  -  1
)  e.  ZZ )  ->  ( ( M  -  1 )  <_  X 
<->  ( M  -  1 )  <_  ( |_ `  X ) ) )
757, 73, 74syl2anc 666 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( M  - 
1 )  <_  X  <->  ( M  -  1 )  <_  ( |_ `  X ) ) )
7671, 75mpbid 214 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M  -  1 )  <_  ( |_ `  X ) )
7762, 67, 10lesubaddd 10212 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( M  - 
1 )  <_  ( |_ `  X )  <->  M  <_  ( ( |_ `  X
)  +  1 ) ) )
7876, 77mpbid 214 . . . . . . . . . . . 12  |-  ( ph  ->  M  <_  ( ( |_ `  X )  +  1 ) )
79 eluz2 11167 . . . . . . . . . . . 12  |-  ( ( ( |_ `  X
)  +  1 )  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  ( ( |_ `  X )  +  1 )  e.  ZZ  /\  M  <_ 
( ( |_ `  X )  +  1 ) ) )
8060, 61, 78, 79syl3anbrc 1190 . . . . . . . . . . 11  |-  ( ph  ->  ( ( |_ `  X )  +  1 )  e.  ( ZZ>= `  M ) )
81 dvfsum.b2 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  Z )  ->  B  e.  RR )
8281recnd 9671 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  Z )  ->  B  e.  CC )
8382ralrimiva 2840 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  Z  B  e.  CC )
84 elfzuz 11798 . . . . . . . . . . . . 13  |-  ( k  e.  ( M ... ( ( |_ `  X )  +  1 ) )  ->  k  e.  ( ZZ>= `  M )
)
85 dvfsum.z . . . . . . . . . . . . 13  |-  Z  =  ( ZZ>= `  M )
8684, 85syl6eleqr 2522 . . . . . . . . . . . 12  |-  ( k  e.  ( M ... ( ( |_ `  X )  +  1 ) )  ->  k  e.  Z )
87 dvfsum.c . . . . . . . . . . . . . 14  |-  ( x  =  k  ->  B  =  C )
8887eleq1d 2492 . . . . . . . . . . . . 13  |-  ( x  =  k  ->  ( B  e.  CC  <->  C  e.  CC ) )
8988rspccva 3182 . . . . . . . . . . . 12  |-  ( ( A. x  e.  Z  B  e.  CC  /\  k  e.  Z )  ->  C  e.  CC )
9083, 86, 89syl2an 480 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M ... ( ( |_ `  X )  +  1 ) ) )  ->  C  e.  CC )
91 eqvisset 3090 . . . . . . . . . . . . 13  |-  ( k  =  ( ( |_
`  X )  +  1 )  ->  (
( |_ `  X
)  +  1 )  e.  _V )
92 eqeq2 2438 . . . . . . . . . . . . . . 15  |-  ( k  =  ( ( |_
`  X )  +  1 )  ->  (
x  =  k  <->  x  =  ( ( |_ `  X )  +  1 ) ) )
9392biimpar 488 . . . . . . . . . . . . . 14  |-  ( ( k  =  ( ( |_ `  X )  +  1 )  /\  x  =  ( ( |_ `  X )  +  1 ) )  ->  x  =  k )
9493, 87syl 17 . . . . . . . . . . . . 13  |-  ( ( k  =  ( ( |_ `  X )  +  1 )  /\  x  =  ( ( |_ `  X )  +  1 ) )  ->  B  =  C )
9591, 94csbied 3423 . . . . . . . . . . . 12  |-  ( k  =  ( ( |_
`  X )  +  1 )  ->  [_ (
( |_ `  X
)  +  1 )  /  x ]_ B  =  C )
9695eqcomd 2431 . . . . . . . . . . 11  |-  ( k  =  ( ( |_
`  X )  +  1 )  ->  C  =  [_ ( ( |_
`  X )  +  1 )  /  x ]_ B )
9780, 90, 96fsumm1 13805 . . . . . . . . . 10  |-  ( ph  -> 
sum_ k  e.  ( M ... ( ( |_ `  X )  +  1 ) ) C  =  ( sum_ k  e.  ( M ... ( ( ( |_
`  X )  +  1 )  -  1 ) ) C  +  [_ ( ( |_ `  X )  +  1 )  /  x ]_ B ) )
98 ax-1cn 9599 . . . . . . . . . . . . . 14  |-  1  e.  CC
99 pncan 9883 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  X
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( |_
`  X )  +  1 )  -  1 )  =  ( |_
`  X ) )
10036, 98, 99sylancl 667 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( |_
`  X )  +  1 )  -  1 )  =  ( |_
`  X ) )
101100oveq2d 6319 . . . . . . . . . . . 12  |-  ( ph  ->  ( M ... (
( ( |_ `  X )  +  1 )  -  1 ) )  =  ( M ... ( |_ `  X ) ) )
102101sumeq1d 13760 . . . . . . . . . . 11  |-  ( ph  -> 
sum_ k  e.  ( M ... ( ( ( |_ `  X
)  +  1 )  -  1 ) ) C  =  sum_ k  e.  ( M ... ( |_ `  X ) ) C )
103102oveq1d 6318 . . . . . . . . . 10  |-  ( ph  ->  ( sum_ k  e.  ( M ... ( ( ( |_ `  X
)  +  1 )  -  1 ) ) C  +  [_ (
( |_ `  X
)  +  1 )  /  x ]_ B
)  =  ( sum_ k  e.  ( M ... ( |_ `  X
) ) C  +  [_ ( ( |_ `  X )  +  1 )  /  x ]_ B ) )
10497, 103eqtrd 2464 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  ( M ... ( ( |_ `  X )  +  1 ) ) C  =  ( sum_ k  e.  ( M ... ( |_ `  X
) ) C  +  [_ ( ( |_ `  X )  +  1 )  /  x ]_ B ) )
105104adantr 467 . . . . . . . 8  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  sum_ k  e.  ( M ... (
( |_ `  X
)  +  1 ) ) C  =  (
sum_ k  e.  ( M ... ( |_
`  X ) ) C  +  [_ (
( |_ `  X
)  +  1 )  /  x ]_ B
) )
10632oveq2d 6319 . . . . . . . . 9  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  ( M ... ( |_ `  Y ) )  =  ( M ... (
( |_ `  X
)  +  1 ) ) )
107106sumeq1d 13760 . . . . . . . 8  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  sum_ k  e.  ( M ... ( |_ `  Y ) ) C  =  sum_ k  e.  ( M ... (
( |_ `  X
)  +  1 ) ) C )
10825csbeq1d 3403 . . . . . . . . 9  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  [_ Y  /  x ]_ B  = 
[_ ( ( |_
`  X )  +  1 )  /  x ]_ B )
109108oveq2d 6319 . . . . . . . 8  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  ( sum_ k  e.  ( M ... ( |_ `  X ) ) C  +  [_ Y  /  x ]_ B )  =  ( sum_ k  e.  ( M ... ( |_
`  X ) ) C  +  [_ (
( |_ `  X
)  +  1 )  /  x ]_ B
) )
110105, 107, 1093eqtr4d 2474 . . . . . . 7  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  sum_ k  e.  ( M ... ( |_ `  Y ) ) C  =  ( sum_ k  e.  ( M ... ( |_ `  X
) ) C  +  [_ Y  /  x ]_ B ) )
111110oveq1d 6318 . . . . . 6  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  ( sum_ k  e.  ( M ... ( |_ `  Y ) ) C  -  [_ Y  /  x ]_ A )  =  ( ( sum_ k  e.  ( M ... ( |_ `  X ) ) C  +  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A ) )
112 fzfid 12187 . . . . . . . . 9  |-  ( ph  ->  ( M ... ( |_ `  X ) )  e.  Fin )
113 elfzuz 11798 . . . . . . . . . . 11  |-  ( k  e.  ( M ... ( |_ `  X ) )  ->  k  e.  ( ZZ>= `  M )
)
114113, 85syl6eleqr 2522 . . . . . . . . . 10  |-  ( k  e.  ( M ... ( |_ `  X ) )  ->  k  e.  Z )
11583, 114, 89syl2an 480 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M ... ( |_
`  X ) ) )  ->  C  e.  CC )
116112, 115fsumcl 13792 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( M ... ( |_
`  X ) ) C  e.  CC )
11740recnd 9671 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  CC )
118117ralrimiva 2840 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  S  A  e.  CC )
119 nfcsb1v 3412 . . . . . . . . . . 11  |-  F/_ x [_ Y  /  x ]_ A
120119nfel1 2601 . . . . . . . . . 10  |-  F/ x [_ Y  /  x ]_ A  e.  CC
121 csbeq1a 3405 . . . . . . . . . . 11  |-  ( x  =  Y  ->  A  =  [_ Y  /  x ]_ A )
122121eleq1d 2492 . . . . . . . . . 10  |-  ( x  =  Y  ->  ( A  e.  CC  <->  [_ Y  /  x ]_ A  e.  CC ) )
123120, 122rspc 3177 . . . . . . . . 9  |-  ( Y  e.  S  ->  ( A. x  e.  S  A  e.  CC  ->  [_ Y  /  x ]_ A  e.  CC )
)
1244, 118, 123sylc 63 . . . . . . . 8  |-  ( ph  ->  [_ Y  /  x ]_ A  e.  CC )
125116, 51, 124addsubd 10009 . . . . . . 7  |-  ( ph  ->  ( ( sum_ k  e.  ( M ... ( |_ `  X ) ) C  +  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A )  =  ( ( sum_ k  e.  ( M ... ( |_ `  X ) ) C  -  [_ Y  /  x ]_ A )  +  [_ Y  /  x ]_ B ) )
126125adantr 467 . . . . . 6  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  (
( sum_ k  e.  ( M ... ( |_
`  X ) ) C  +  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A )  =  ( ( sum_ k  e.  ( M ... ( |_ `  X ) ) C  -  [_ Y  /  x ]_ A )  +  [_ Y  /  x ]_ B ) )
127111, 126eqtrd 2464 . . . . 5  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  ( sum_ k  e.  ( M ... ( |_ `  Y ) ) C  -  [_ Y  /  x ]_ A )  =  ( ( sum_ k  e.  ( M ... ( |_ `  X ) ) C  -  [_ Y  /  x ]_ A )  +  [_ Y  /  x ]_ B ) )
12859, 127oveq12d 6321 . . . 4  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  (
( ( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_ `  Y ) ) C  -  [_ Y  /  x ]_ A ) )  =  ( ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ B )  +  ( ( sum_ k  e.  ( M ... ( |_ `  X ) ) C  -  [_ Y  /  x ]_ A )  +  [_ Y  /  x ]_ B ) ) )
12937, 51mulcld 9665 . . . . . 6  |-  ( ph  ->  ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  e.  CC )
130129adantr 467 . . . . 5  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  (
( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  e.  CC )
13151adantr 467 . . . . 5  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  [_ Y  /  x ]_ B  e.  CC )
132116, 124subcld 9988 . . . . . 6  |-  ( ph  ->  ( sum_ k  e.  ( M ... ( |_
`  X ) ) C  -  [_ Y  /  x ]_ A )  e.  CC )
133132adantr 467 . . . . 5  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  ( sum_ k  e.  ( M ... ( |_ `  X ) ) C  -  [_ Y  /  x ]_ A )  e.  CC )
134130, 131, 133nppcan3d 10015 . . . 4  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  (
( ( ( Y  -  ( |_ `  X ) )  x. 
[_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ B
)  +  ( (
sum_ k  e.  ( M ... ( |_
`  X ) ) C  -  [_ Y  /  x ]_ A )  +  [_ Y  /  x ]_ B ) )  =  ( ( ( Y  -  ( |_
`  X ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  X ) ) C  -  [_ Y  /  x ]_ A ) ) )
135128, 134eqtrd 2464 . . 3  |-  ( (
ph  /\  Y  =  ( ( |_ `  X )  +  1 ) )  ->  (
( ( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_ `  Y ) ) C  -  [_ Y  /  x ]_ A ) )  =  ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  X ) ) C  -  [_ Y  /  x ]_ A ) ) )
136 dvfsumlem1.6 . . . 4  |-  ( ph  ->  Y  <_  ( ( |_ `  X )  +  1 ) )
137 peano2re 9808 . . . . . 6  |-  ( ( |_ `  X )  e.  RR  ->  (
( |_ `  X
)  +  1 )  e.  RR )
13810, 137syl 17 . . . . 5  |-  ( ph  ->  ( ( |_ `  X )  +  1 )  e.  RR )
1395, 138leloed 9780 . . . 4  |-  ( ph  ->  ( Y  <_  (
( |_ `  X
)  +  1 )  <-> 
( Y  <  (
( |_ `  X
)  +  1 )  \/  Y  =  ( ( |_ `  X
)  +  1 ) ) ) )
140136, 139mpbid 214 . . 3  |-  ( ph  ->  ( Y  <  (
( |_ `  X
)  +  1 )  \/  Y  =  ( ( |_ `  X
)  +  1 ) ) )
14124, 135, 140mpjaodan 794 . 2  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  Y ) )  x. 
[_ Y  /  x ]_ B )  +  (
sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A ) )  =  ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  X ) ) C  -  [_ Y  /  x ]_ A ) ) )
142 ovex 6331 . . 3  |-  ( ( ( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A ) )  e.  _V
143 nfcv 2585 . . . 4  |-  F/_ x Y
144 nfcv 2585 . . . . . 6  |-  F/_ x
( Y  -  ( |_ `  Y ) )
145 nfcv 2585 . . . . . 6  |-  F/_ x  x.
146144, 145, 46nfov 6329 . . . . 5  |-  F/_ x
( ( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )
147 nfcv 2585 . . . . 5  |-  F/_ x  +
148 nfcv 2585 . . . . . 6  |-  F/_ x sum_ k  e.  ( M ... ( |_ `  Y ) ) C
149 nfcv 2585 . . . . . 6  |-  F/_ x  -
150148, 149, 119nfov 6329 . . . . 5  |-  F/_ x
( sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A )
151146, 147, 150nfov 6329 . . . 4  |-  F/_ x
( ( ( Y  -  ( |_ `  Y ) )  x. 
[_ Y  /  x ]_ B )  +  (
sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A ) )
152 id 23 . . . . . . 7  |-  ( x  =  Y  ->  x  =  Y )
153 fveq2 5879 . . . . . . 7  |-  ( x  =  Y  ->  ( |_ `  x )  =  ( |_ `  Y
) )
154152, 153oveq12d 6321 . . . . . 6  |-  ( x  =  Y  ->  (
x  -  ( |_
`  x ) )  =  ( Y  -  ( |_ `  Y ) ) )
155154, 48oveq12d 6321 . . . . 5  |-  ( x  =  Y  ->  (
( x  -  ( |_ `  x ) )  x.  B )  =  ( ( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B ) )
156153oveq2d 6319 . . . . . . 7  |-  ( x  =  Y  ->  ( M ... ( |_ `  x ) )  =  ( M ... ( |_ `  Y ) ) )
157156sumeq1d 13760 . . . . . 6  |-  ( x  =  Y  ->  sum_ k  e.  ( M ... ( |_ `  x ) ) C  =  sum_ k  e.  ( M ... ( |_ `  Y ) ) C )
158157, 121oveq12d 6321 . . . . 5  |-  ( x  =  Y  ->  ( sum_ k  e.  ( M ... ( |_ `  x ) ) C  -  A )  =  ( sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A ) )
159155, 158oveq12d 6321 . . . 4  |-  ( x  =  Y  ->  (
( ( x  -  ( |_ `  x ) )  x.  B )  +  ( sum_ k  e.  ( M ... ( |_ `  x ) ) C  -  A ) )  =  ( ( ( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A ) ) )
160 dvfsum.h . . . 4  |-  H  =  ( x  e.  S  |->  ( ( ( x  -  ( |_ `  x ) )  x.  B )  +  (
sum_ k  e.  ( M ... ( |_
`  x ) ) C  -  A ) ) )
161143, 151, 159, 160fvmptf 5980 . . 3  |-  ( ( Y  e.  S  /\  ( ( ( Y  -  ( |_ `  Y ) )  x. 
[_ Y  /  x ]_ B )  +  (
sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A ) )  e.  _V )  ->  ( H `  Y
)  =  ( ( ( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A ) ) )
1624, 142, 161sylancl 667 . 2  |-  ( ph  ->  ( H `  Y
)  =  ( ( ( Y  -  ( |_ `  Y ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  Y ) ) C  -  [_ Y  /  x ]_ A ) ) )
163129, 124, 116subadd23d 10010 . 2  |-  ( ph  ->  ( ( ( ( Y  -  ( |_
`  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A )  +  sum_ k  e.  ( M ... ( |_ `  X
) ) C )  =  ( ( ( Y  -  ( |_
`  X ) )  x.  [_ Y  /  x ]_ B )  +  ( sum_ k  e.  ( M ... ( |_
`  X ) ) C  -  [_ Y  /  x ]_ A ) ) )
164141, 162, 1633eqtr4d 2474 1  |-  ( ph  ->  ( H `  Y
)  =  ( ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A )  + 
sum_ k  e.  ( M ... ( |_
`  X ) ) C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869   A.wral 2776   _Vcvv 3082   [_csb 3396    C_ wss 3437   class class class wbr 4421    |-> cmpt 4480   ` cfv 5599  (class class class)co 6303   CCcc 9539   RRcr 9540   1c1 9542    + caddc 9544    x. cmul 9546   +oocpnf 9674   RR*cxr 9676    < clt 9677    <_ cle 9678    - cmin 9862   ZZcz 10939   ZZ>=cuz 11161   (,)cioo 11637   ...cfz 11786   |_cfl 12027   sum_csu 13745    _D cdv 22810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-inf2 8150  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618  ax-pre-sup 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-fal 1444  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-iin 4300  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-se 4811  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-isom 5608  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-1st 6805  df-2nd 6806  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-oadd 7192  df-er 7369  df-map 7480  df-pm 7481  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-fi 7929  df-sup 7960  df-inf 7961  df-oi 8029  df-card 8376  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-div 10272  df-nn 10612  df-2 10670  df-3 10671  df-4 10672  df-5 10673  df-6 10674  df-7 10675  df-8 10676  df-9 10677  df-10 10678  df-n0 10872  df-z 10940  df-dec 11054  df-uz 11162  df-q 11267  df-rp 11305  df-xneg 11411  df-xadd 11412  df-xmul 11413  df-ioo 11641  df-icc 11644  df-fz 11787  df-fzo 11918  df-fl 12029  df-seq 12215  df-exp 12274  df-hash 12517  df-cj 13156  df-re 13157  df-im 13158  df-sqrt 13292  df-abs 13293  df-clim 13545  df-sum 13746  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-plusg 15196  df-mulr 15197  df-starv 15198  df-tset 15202  df-ple 15203  df-ds 15205  df-unif 15206  df-rest 15314  df-topn 15315  df-topgen 15335  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-fbas 18960  df-fg 18961  df-cnfld 18964  df-top 19913  df-bases 19914  df-topon 19915  df-topsp 19916  df-cld 20026  df-ntr 20027  df-cls 20028  df-nei 20106  df-lp 20144  df-perf 20145  df-cn 20235  df-cnp 20236  df-haus 20323  df-fil 20853  df-fm 20945  df-flim 20946  df-flf 20947  df-xms 21327  df-ms 21328  df-cncf 21902  df-limc 22813  df-dv 22814
This theorem is referenced by:  dvfsumlem2  22971
  Copyright terms: Public domain W3C validator