MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumle Structured version   Unicode version

Theorem dvfsumle 22400
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.)
Hypotheses
Ref Expression
dvfsumle.m  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
dvfsumle.a  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  A )  e.  ( ( M [,] N
) -cn-> RR ) )
dvfsumle.v  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  B  e.  V )
dvfsumle.b  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) )  =  ( x  e.  ( M (,) N )  |->  B ) )
dvfsumle.c  |-  ( x  =  M  ->  A  =  C )
dvfsumle.d  |-  ( x  =  N  ->  A  =  D )
dvfsumle.x  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  X  e.  RR )
dvfsumle.l  |-  ( (
ph  /\  ( k  e.  ( M..^ N )  /\  x  e.  ( k (,) ( k  +  1 ) ) ) )  ->  X  <_  B )
Assertion
Ref Expression
dvfsumle  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) X  <_  ( D  -  C ) )
Distinct variable groups:    A, k    x, k, M    k, N, x    ph, k, x    x, X    x, C    x, D    x, V
Allowed substitution hints:    A( x)    B( x, k)    C( k)    D( k)    V( k)    X( k)

Proof of Theorem dvfsumle
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fzofi 12066 . . . 4  |-  ( M..^ N )  e.  Fin
21a1i 11 . . 3  |-  ( ph  ->  ( M..^ N )  e.  Fin )
3 dvfsumle.x . . 3  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  X  e.  RR )
4 dvfsumle.m . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 eluzel2 11097 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
64, 5syl 16 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
7 eluzelz 11101 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
84, 7syl 16 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
9 fzval2 11686 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  ( ( M [,] N )  i^i  ZZ ) )
106, 8, 9syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( M ... N
)  =  ( ( M [,] N )  i^i  ZZ ) )
11 inss1 3703 . . . . . . . . 9  |-  ( ( M [,] N )  i^i  ZZ )  C_  ( M [,] N )
1210, 11syl6eqss 3539 . . . . . . . 8  |-  ( ph  ->  ( M ... N
)  C_  ( M [,] N ) )
1312sselda 3489 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( M ... N ) )  ->  y  e.  ( M [,] N ) )
14 dvfsumle.a . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  A )  e.  ( ( M [,] N
) -cn-> RR ) )
15 cncff 21375 . . . . . . . . . 10  |-  ( ( x  e.  ( M [,] N )  |->  A )  e.  ( ( M [,] N )
-cn-> RR )  ->  (
x  e.  ( M [,] N )  |->  A ) : ( M [,] N ) --> RR )
1614, 15syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  A ) : ( M [,] N ) --> RR )
17 eqid 2443 . . . . . . . . . 10  |-  ( x  e.  ( M [,] N )  |->  A )  =  ( x  e.  ( M [,] N
)  |->  A )
1817fmpt 6037 . . . . . . . . 9  |-  ( A. x  e.  ( M [,] N ) A  e.  RR  <->  ( x  e.  ( M [,] N
)  |->  A ) : ( M [,] N
) --> RR )
1916, 18sylibr 212 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( M [,] N ) A  e.  RR )
20 nfcsb1v 3436 . . . . . . . . . 10  |-  F/_ x [_ y  /  x ]_ A
2120nfel1 2621 . . . . . . . . 9  |-  F/ x [_ y  /  x ]_ A  e.  RR
22 csbeq1a 3429 . . . . . . . . . 10  |-  ( x  =  y  ->  A  =  [_ y  /  x ]_ A )
2322eleq1d 2512 . . . . . . . . 9  |-  ( x  =  y  ->  ( A  e.  RR  <->  [_ y  /  x ]_ A  e.  RR ) )
2421, 23rspc 3190 . . . . . . . 8  |-  ( y  e.  ( M [,] N )  ->  ( A. x  e.  ( M [,] N ) A  e.  RR  ->  [_ y  /  x ]_ A  e.  RR ) )
2519, 24mpan9 469 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( M [,] N ) )  ->  [_ y  /  x ]_ A  e.  RR )
2613, 25syldan 470 . . . . . 6  |-  ( (
ph  /\  y  e.  ( M ... N ) )  ->  [_ y  /  x ]_ A  e.  RR )
2726ralrimiva 2857 . . . . 5  |-  ( ph  ->  A. y  e.  ( M ... N )
[_ y  /  x ]_ A  e.  RR )
28 fzofzp1 11891 . . . . 5  |-  ( k  e.  ( M..^ N
)  ->  ( k  +  1 )  e.  ( M ... N
) )
29 csbeq1 3423 . . . . . . 7  |-  ( y  =  ( k  +  1 )  ->  [_ y  /  x ]_ A  = 
[_ ( k  +  1 )  /  x ]_ A )
3029eleq1d 2512 . . . . . 6  |-  ( y  =  ( k  +  1 )  ->  ( [_ y  /  x ]_ A  e.  RR  <->  [_ ( k  +  1 )  /  x ]_ A  e.  RR )
)
3130rspccva 3195 . . . . 5  |-  ( ( A. y  e.  ( M ... N )
[_ y  /  x ]_ A  e.  RR  /\  ( k  +  1 )  e.  ( M ... N ) )  ->  [_ ( k  +  1 )  /  x ]_ A  e.  RR )
3227, 28, 31syl2an 477 . . . 4  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  [_ ( k  +  1 )  /  x ]_ A  e.  RR )
33 elfzofz 11825 . . . . 5  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ( M ... N ) )
34 csbeq1 3423 . . . . . . 7  |-  ( y  =  k  ->  [_ y  /  x ]_ A  = 
[_ k  /  x ]_ A )
3534eleq1d 2512 . . . . . 6  |-  ( y  =  k  ->  ( [_ y  /  x ]_ A  e.  RR  <->  [_ k  /  x ]_ A  e.  RR )
)
3635rspccva 3195 . . . . 5  |-  ( ( A. y  e.  ( M ... N )
[_ y  /  x ]_ A  e.  RR  /\  k  e.  ( M ... N ) )  ->  [_ k  /  x ]_ A  e.  RR )
3727, 33, 36syl2an 477 . . . 4  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  [_ k  /  x ]_ A  e.  RR )
3832, 37resubcld 9994 . . 3  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( [_ (
k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A )  e.  RR )
39 elfzoelz 11811 . . . . . . . . . 10  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ZZ )
4039adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  ZZ )
4140zred 10976 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  RR )
4241recnd 9625 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  CC )
43 ax-1cn 9553 . . . . . . 7  |-  1  e.  CC
44 pncan2 9832 . . . . . . 7  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( ( k  +  1 )  -  k
)  =  1 )
4542, 43, 44sylancl 662 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( k  +  1 )  -  k )  =  1 )
4645oveq2d 6297 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( X  x.  ( ( k  +  1 )  -  k
) )  =  ( X  x.  1 ) )
473recnd 9625 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  X  e.  CC )
48 peano2re 9756 . . . . . . . 8  |-  ( k  e.  RR  ->  (
k  +  1 )  e.  RR )
4941, 48syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  RR )
5049recnd 9625 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  CC )
5147, 50, 42subdid 10019 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( X  x.  ( ( k  +  1 )  -  k
) )  =  ( ( X  x.  (
k  +  1 ) )  -  ( X  x.  k ) ) )
5247mulid1d 9616 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( X  x.  1 )  =  X )
5346, 51, 523eqtr3d 2492 . . . 4  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( X  x.  ( k  +  1 ) )  -  ( X  x.  k
) )  =  X )
54 eqid 2443 . . . . . 6  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
5554mulcn 21349 . . . . . 6  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
566zred 10976 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  RR )
5756adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  M  e.  RR )
588zred 10976 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  RR )
5958adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  N  e.  RR )
60 elfzole1 11818 . . . . . . . . . . 11  |-  ( k  e.  ( M..^ N
)  ->  M  <_  k )
6160adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  M  <_  k
)
6228adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  ( M ... N ) )
63 elfzle2 11701 . . . . . . . . . . 11  |-  ( ( k  +  1 )  e.  ( M ... N )  ->  (
k  +  1 )  <_  N )
6462, 63syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  <_  N
)
65 iccss 11603 . . . . . . . . . 10  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  ( M  <_ 
k  /\  ( k  +  1 )  <_  N ) )  -> 
( k [,] (
k  +  1 ) )  C_  ( M [,] N ) )
6657, 59, 61, 64, 65syl22anc 1230 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k [,] ( k  +  1 ) )  C_  ( M [,] N ) )
67 iccssre 11617 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M [,] N
)  C_  RR )
6856, 58, 67syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( M [,] N
)  C_  RR )
6968adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( M [,] N )  C_  RR )
7066, 69sstrd 3499 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k [,] ( k  +  1 ) )  C_  RR )
71 ax-resscn 9552 . . . . . . . 8  |-  RR  C_  CC
7270, 71syl6ss 3501 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k [,] ( k  +  1 ) )  C_  CC )
7371a1i 11 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  RR  C_  CC )
74 cncfmptc 21393 . . . . . . 7  |-  ( ( X  e.  RR  /\  ( k [,] (
k  +  1 ) )  C_  CC  /\  RR  C_  CC )  ->  (
y  e.  ( k [,] ( k  +  1 ) )  |->  X )  e.  ( ( k [,] ( k  +  1 ) )
-cn-> RR ) )
753, 72, 73, 74syl3anc 1229 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( y  e.  ( k [,] (
k  +  1 ) )  |->  X )  e.  ( ( k [,] ( k  +  1 ) ) -cn-> RR ) )
76 cncfmptid 21394 . . . . . . 7  |-  ( ( ( k [,] (
k  +  1 ) )  C_  RR  /\  RR  C_  CC )  ->  (
y  e.  ( k [,] ( k  +  1 ) )  |->  y )  e.  ( ( k [,] ( k  +  1 ) )
-cn-> RR ) )
7770, 71, 76sylancl 662 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( y  e.  ( k [,] (
k  +  1 ) )  |->  y )  e.  ( ( k [,] ( k  +  1 ) ) -cn-> RR ) )
78 remulcl 9580 . . . . . 6  |-  ( ( X  e.  RR  /\  y  e.  RR )  ->  ( X  x.  y
)  e.  RR )
7954, 55, 75, 77, 71, 78cncfmpt2ss 21397 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( y  e.  ( k [,] (
k  +  1 ) )  |->  ( X  x.  y ) )  e.  ( ( k [,] ( k  +  1 ) ) -cn-> RR ) )
80 reelprrecn 9587 . . . . . . . 8  |-  RR  e.  { RR ,  CC }
8180a1i 11 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  RR  e.  { RR ,  CC } )
8257rexrd 9646 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  M  e.  RR* )
83 iooss1 11575 . . . . . . . . . . 11  |-  ( ( M  e.  RR*  /\  M  <_  k )  ->  (
k (,) ( k  +  1 ) ) 
C_  ( M (,) ( k  +  1 ) ) )
8482, 61, 83syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k (,) ( k  +  1 ) )  C_  ( M (,) ( k  +  1 ) ) )
8559rexrd 9646 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  N  e.  RR* )
86 iooss2 11576 . . . . . . . . . . 11  |-  ( ( N  e.  RR*  /\  (
k  +  1 )  <_  N )  -> 
( M (,) (
k  +  1 ) )  C_  ( M (,) N ) )
8785, 64, 86syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( M (,) ( k  +  1 ) )  C_  ( M (,) N ) )
8884, 87sstrd 3499 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k (,) ( k  +  1 ) )  C_  ( M (,) N ) )
89 ioossicc 11621 . . . . . . . . . 10  |-  ( M (,) N )  C_  ( M [,] N )
9069, 71syl6ss 3501 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( M [,] N )  C_  CC )
9189, 90syl5ss 3500 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( M (,) N )  C_  CC )
9288, 91sstrd 3499 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k (,) ( k  +  1 ) )  C_  CC )
9392sselda 3489 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  y  e.  ( k (,) (
k  +  1 ) ) )  ->  y  e.  CC )
94 1cnd 9615 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  y  e.  ( k (,) (
k  +  1 ) ) )  ->  1  e.  CC )
9573sselda 3489 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  y  e.  RR )  ->  y  e.  CC )
96 1cnd 9615 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  y  e.  RR )  ->  1  e.  CC )
9781dvmptid 22338 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( y  e.  RR  |->  y ) )  =  ( y  e.  RR  |->  1 ) )
98 ioossre 11597 . . . . . . . . 9  |-  ( k (,) ( k  +  1 ) )  C_  RR
9998a1i 11 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k (,) ( k  +  1 ) )  C_  RR )
10054tgioo2 21286 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
101 iooretop 21251 . . . . . . . . 9  |-  ( k (,) ( k  +  1 ) )  e.  ( topGen `  ran  (,) )
102101a1i 11 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k (,) ( k  +  1 ) )  e.  (
topGen `  ran  (,) )
)
10381, 95, 96, 97, 99, 100, 54, 102dvmptres 22344 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( y  e.  ( k (,) ( k  +  1 ) ) 
|->  y ) )  =  ( y  e.  ( k (,) ( k  +  1 ) ) 
|->  1 ) )
10481, 93, 94, 103, 47dvmptcmul 22345 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( y  e.  ( k (,) ( k  +  1 ) ) 
|->  ( X  x.  y
) ) )  =  ( y  e.  ( k (,) ( k  +  1 ) ) 
|->  ( X  x.  1 ) ) )
10552mpteq2dv 4524 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( y  e.  ( k (,) (
k  +  1 ) )  |->  ( X  x.  1 ) )  =  ( y  e.  ( k (,) ( k  +  1 ) ) 
|->  X ) )
106104, 105eqtrd 2484 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( y  e.  ( k (,) ( k  +  1 ) ) 
|->  ( X  x.  y
) ) )  =  ( y  e.  ( k (,) ( k  +  1 ) ) 
|->  X ) )
107 nfcv 2605 . . . . . . 7  |-  F/_ y A
108107, 20, 22cbvmpt 4527 . . . . . 6  |-  ( x  e.  ( k [,] ( k  +  1 ) )  |->  A )  =  ( y  e.  ( k [,] (
k  +  1 ) )  |->  [_ y  /  x ]_ A )
10966resmptd 5315 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( x  e.  ( M [,] N )  |->  A )  |`  ( k [,] (
k  +  1 ) ) )  =  ( x  e.  ( k [,] ( k  +  1 ) )  |->  A ) )
11014adantr 465 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( M [,] N
)  |->  A )  e.  ( ( M [,] N ) -cn-> RR ) )
111 rescncf 21379 . . . . . . . 8  |-  ( ( k [,] ( k  +  1 ) ) 
C_  ( M [,] N )  ->  (
( x  e.  ( M [,] N ) 
|->  A )  e.  ( ( M [,] N
) -cn-> RR )  ->  (
( x  e.  ( M [,] N ) 
|->  A )  |`  (
k [,] ( k  +  1 ) ) )  e.  ( ( k [,] ( k  +  1 ) )
-cn-> RR ) ) )
11266, 110, 111sylc 60 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( x  e.  ( M [,] N )  |->  A )  |`  ( k [,] (
k  +  1 ) ) )  e.  ( ( k [,] (
k  +  1 ) ) -cn-> RR ) )
113109, 112eqeltrrd 2532 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( k [,] (
k  +  1 ) )  |->  A )  e.  ( ( k [,] ( k  +  1 ) ) -cn-> RR ) )
114108, 113syl5eqelr 2536 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( y  e.  ( k [,] (
k  +  1 ) )  |->  [_ y  /  x ]_ A )  e.  ( ( k [,] (
k  +  1 ) ) -cn-> RR ) )
11516adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( M [,] N
)  |->  A ) : ( M [,] N
) --> RR )
116115, 18sylibr 212 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  A. x  e.  ( M [,] N ) A  e.  RR )
11789sseli 3485 . . . . . . . 8  |-  ( y  e.  ( M (,) N )  ->  y  e.  ( M [,] N
) )
11824impcom 430 . . . . . . . 8  |-  ( ( A. x  e.  ( M [,] N ) A  e.  RR  /\  y  e.  ( M [,] N ) )  ->  [_ y  /  x ]_ A  e.  RR )
119116, 117, 118syl2an 477 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  y  e.  ( M (,) N
) )  ->  [_ y  /  x ]_ A  e.  RR )
120119recnd 9625 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  y  e.  ( M (,) N
) )  ->  [_ y  /  x ]_ A  e.  CC )
12189sseli 3485 . . . . . . . . . . . 12  |-  ( x  e.  ( M (,) N )  ->  x  e.  ( M [,] N
) )
12219r19.21bi 2812 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  A  e.  RR )
123122adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M [,] N
) )  ->  A  e.  RR )
124121, 123sylan2 474 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  A  e.  RR )
125 eqid 2443 . . . . . . . . . . 11  |-  ( x  e.  ( M (,) N )  |->  A )  =  ( x  e.  ( M (,) N
)  |->  A )
126124, 125fmptd 6040 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( M (,) N
)  |->  A ) : ( M (,) N
) --> RR )
127 ioossre 11597 . . . . . . . . . 10  |-  ( M (,) N )  C_  RR
128 dvfre 22332 . . . . . . . . . 10  |-  ( ( ( x  e.  ( M (,) N ) 
|->  A ) : ( M (,) N ) --> RR  /\  ( M (,) N )  C_  RR )  ->  ( RR 
_D  ( x  e.  ( M (,) N
)  |->  A ) ) : dom  ( RR 
_D  ( x  e.  ( M (,) N
)  |->  A ) ) --> RR )
129126, 127, 128sylancl 662 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  ( M (,) N )  |->  A ) ) : dom  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) ) --> RR )
130 dvfsumle.b . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) )  =  ( x  e.  ( M (,) N )  |->  B ) )
131130adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  ( M (,) N )  |->  A ) )  =  ( x  e.  ( M (,) N )  |->  B ) )
132131dmeqd 5195 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  dom  ( RR  _D  ( x  e.  ( M (,) N ) 
|->  A ) )  =  dom  ( x  e.  ( M (,) N
)  |->  B ) )
133 dvfsumle.v . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  B  e.  V )
134133adantlr 714 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  B  e.  V )
135134ralrimiva 2857 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  A. x  e.  ( M (,) N ) B  e.  V )
136 dmmptg 5494 . . . . . . . . . . . 12  |-  ( A. x  e.  ( M (,) N ) B  e.  V  ->  dom  ( x  e.  ( M (,) N )  |->  B )  =  ( M (,) N ) )
137135, 136syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  dom  ( x  e.  ( M (,) N
)  |->  B )  =  ( M (,) N
) )
138132, 137eqtrd 2484 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  dom  ( RR  _D  ( x  e.  ( M (,) N ) 
|->  A ) )  =  ( M (,) N
) )
139131, 138feq12d 5710 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( RR 
_D  ( x  e.  ( M (,) N
)  |->  A ) ) : dom  ( RR 
_D  ( x  e.  ( M (,) N
)  |->  A ) ) --> RR  <->  ( x  e.  ( M (,) N
)  |->  B ) : ( M (,) N
) --> RR ) )
140129, 139mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( M (,) N
)  |->  B ) : ( M (,) N
) --> RR )
141 eqid 2443 . . . . . . . . 9  |-  ( x  e.  ( M (,) N )  |->  B )  =  ( x  e.  ( M (,) N
)  |->  B )
142141fmpt 6037 . . . . . . . 8  |-  ( A. x  e.  ( M (,) N ) B  e.  RR  <->  ( x  e.  ( M (,) N
)  |->  B ) : ( M (,) N
) --> RR )
143140, 142sylibr 212 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  A. x  e.  ( M (,) N ) B  e.  RR )
144 nfcsb1v 3436 . . . . . . . . 9  |-  F/_ x [_ y  /  x ]_ B
145144nfel1 2621 . . . . . . . 8  |-  F/ x [_ y  /  x ]_ B  e.  RR
146 csbeq1a 3429 . . . . . . . . 9  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
147146eleq1d 2512 . . . . . . . 8  |-  ( x  =  y  ->  ( B  e.  RR  <->  [_ y  /  x ]_ B  e.  RR ) )
148145, 147rspc 3190 . . . . . . 7  |-  ( y  e.  ( M (,) N )  ->  ( A. x  e.  ( M (,) N ) B  e.  RR  ->  [_ y  /  x ]_ B  e.  RR ) )
149143, 148mpan9 469 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  y  e.  ( M (,) N
) )  ->  [_ y  /  x ]_ B  e.  RR )
150107, 20, 22cbvmpt 4527 . . . . . . . 8  |-  ( x  e.  ( M (,) N )  |->  A )  =  ( y  e.  ( M (,) N
)  |->  [_ y  /  x ]_ A )
151150oveq2i 6292 . . . . . . 7  |-  ( RR 
_D  ( x  e.  ( M (,) N
)  |->  A ) )  =  ( RR  _D  ( y  e.  ( M (,) N ) 
|->  [_ y  /  x ]_ A ) )
152 nfcv 2605 . . . . . . . 8  |-  F/_ y B
153152, 144, 146cbvmpt 4527 . . . . . . 7  |-  ( x  e.  ( M (,) N )  |->  B )  =  ( y  e.  ( M (,) N
)  |->  [_ y  /  x ]_ B )
154131, 151, 1533eqtr3g 2507 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( y  e.  ( M (,) N ) 
|->  [_ y  /  x ]_ A ) )  =  ( y  e.  ( M (,) N ) 
|->  [_ y  /  x ]_ B ) )
15581, 120, 149, 154, 88, 100, 54, 102dvmptres 22344 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( y  e.  ( k (,) ( k  +  1 ) ) 
|->  [_ y  /  x ]_ A ) )  =  ( y  e.  ( k (,) ( k  +  1 ) ) 
|->  [_ y  /  x ]_ B ) )
156 dvfsumle.l . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( M..^ N )  /\  x  e.  ( k (,) ( k  +  1 ) ) ) )  ->  X  <_  B )
157156anassrs 648 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k (,) (
k  +  1 ) ) )  ->  X  <_  B )
158157ralrimiva 2857 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  A. x  e.  ( k (,) ( k  +  1 ) ) X  <_  B )
159 nfcv 2605 . . . . . . . 8  |-  F/_ x X
160 nfcv 2605 . . . . . . . 8  |-  F/_ x  <_
161159, 160, 144nfbr 4481 . . . . . . 7  |-  F/ x  X  <_  [_ y  /  x ]_ B
162146breq2d 4449 . . . . . . 7  |-  ( x  =  y  ->  ( X  <_  B  <->  X  <_  [_ y  /  x ]_ B ) )
163161, 162rspc 3190 . . . . . 6  |-  ( y  e.  ( k (,) ( k  +  1 ) )  ->  ( A. x  e.  (
k (,) ( k  +  1 ) ) X  <_  B  ->  X  <_  [_ y  /  x ]_ B ) )
164158, 163mpan9 469 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  y  e.  ( k (,) (
k  +  1 ) ) )  ->  X  <_  [_ y  /  x ]_ B )
16541rexrd 9646 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  RR* )
16649rexrd 9646 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  RR* )
16741lep1d 10484 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  <_  (
k  +  1 ) )
168 lbicc2 11647 . . . . . 6  |-  ( ( k  e.  RR*  /\  (
k  +  1 )  e.  RR*  /\  k  <_  ( k  +  1 ) )  ->  k  e.  ( k [,] (
k  +  1 ) ) )
169165, 166, 167, 168syl3anc 1229 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  ( k [,] ( k  +  1 ) ) )
170 ubicc2 11648 . . . . . 6  |-  ( ( k  e.  RR*  /\  (
k  +  1 )  e.  RR*  /\  k  <_  ( k  +  1 ) )  ->  (
k  +  1 )  e.  ( k [,] ( k  +  1 ) ) )
171165, 166, 167, 170syl3anc 1229 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  ( k [,] ( k  +  1 ) ) )
172 oveq2 6289 . . . . 5  |-  ( y  =  k  ->  ( X  x.  y )  =  ( X  x.  k ) )
173 oveq2 6289 . . . . 5  |-  ( y  =  ( k  +  1 )  ->  ( X  x.  y )  =  ( X  x.  ( k  +  1 ) ) )
17441, 49, 79, 106, 114, 155, 164, 169, 171, 167, 172, 34, 173, 29dvle 22386 . . . 4  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( X  x.  ( k  +  1 ) )  -  ( X  x.  k
) )  <_  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) )
17553, 174eqbrtrrd 4459 . . 3  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  X  <_  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) )
1762, 3, 38, 175fsumle 13595 . 2  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) X  <_  sum_ k  e.  ( M..^ N ) (
[_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) )
177 vex 3098 . . . . 5  |-  y  e. 
_V
178177a1i 11 . . . 4  |-  ( y  =  M  ->  y  e.  _V )
179 eqeq2 2458 . . . . . 6  |-  ( y  =  M  ->  (
x  =  y  <->  x  =  M ) )
180179biimpa 484 . . . . 5  |-  ( ( y  =  M  /\  x  =  y )  ->  x  =  M )
181 dvfsumle.c . . . . 5  |-  ( x  =  M  ->  A  =  C )
182180, 181syl 16 . . . 4  |-  ( ( y  =  M  /\  x  =  y )  ->  A  =  C )
183178, 182csbied 3447 . . 3  |-  ( y  =  M  ->  [_ y  /  x ]_ A  =  C )
184177a1i 11 . . . 4  |-  ( y  =  N  ->  y  e.  _V )
185 eqeq2 2458 . . . . . 6  |-  ( y  =  N  ->  (
x  =  y  <->  x  =  N ) )
186185biimpa 484 . . . . 5  |-  ( ( y  =  N  /\  x  =  y )  ->  x  =  N )
187 dvfsumle.d . . . . 5  |-  ( x  =  N  ->  A  =  D )
188186, 187syl 16 . . . 4  |-  ( ( y  =  N  /\  x  =  y )  ->  A  =  D )
189184, 188csbied 3447 . . 3  |-  ( y  =  N  ->  [_ y  /  x ]_ A  =  D )
19026recnd 9625 . . 3  |-  ( (
ph  /\  y  e.  ( M ... N ) )  ->  [_ y  /  x ]_ A  e.  CC )
19134, 29, 183, 189, 4, 190telfsumo2 13599 . 2  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) (
[_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A )  =  ( D  -  C ) )
192176, 191breqtrd 4461 1  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) X  <_  ( D  -  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1383    e. wcel 1804   A.wral 2793   _Vcvv 3095   [_csb 3420    i^i cin 3460    C_ wss 3461   {cpr 4016   class class class wbr 4437    |-> cmpt 4495   dom cdm 4989   ran crn 4990    |` cres 4991   -->wf 5574   ` cfv 5578  (class class class)co 6281   Fincfn 7518   CCcc 9493   RRcr 9494   1c1 9496    + caddc 9498    x. cmul 9500   RR*cxr 9630    <_ cle 9632    - cmin 9810   ZZcz 10871   ZZ>=cuz 11092   (,)cioo 11540   [,]cicc 11543   ...cfz 11683  ..^cfzo 11806   sum_csu 13490   TopOpenctopn 14801   topGenctg 14817  ℂfldccnfld 18399   -cn->ccncf 21358    _D cdv 22245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-7 10606  df-8 10607  df-9 10608  df-10 10609  df-n0 10803  df-z 10872  df-dec 10987  df-uz 11093  df-q 11194  df-rp 11232  df-xneg 11329  df-xadd 11330  df-xmul 11331  df-ioo 11544  df-ico 11546  df-icc 11547  df-fz 11684  df-fzo 11807  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 12914  df-re 12915  df-im 12916  df-sqrt 13050  df-abs 13051  df-clim 13293  df-sum 13491  df-struct 14616  df-ndx 14617  df-slot 14618  df-base 14619  df-sets 14620  df-ress 14621  df-plusg 14692  df-mulr 14693  df-starv 14694  df-sca 14695  df-vsca 14696  df-ip 14697  df-tset 14698  df-ple 14699  df-ds 14701  df-unif 14702  df-hom 14703  df-cco 14704  df-rest 14802  df-topn 14803  df-0g 14821  df-gsum 14822  df-topgen 14823  df-pt 14824  df-prds 14827  df-xrs 14881  df-qtop 14886  df-imas 14887  df-xps 14889  df-mre 14965  df-mrc 14966  df-acs 14968  df-mgm 15851  df-sgrp 15890  df-mnd 15900  df-submnd 15946  df-mulg 16039  df-cntz 16334  df-cmn 16779  df-psmet 18390  df-xmet 18391  df-met 18392  df-bl 18393  df-mopn 18394  df-fbas 18395  df-fg 18396  df-cnfld 18400  df-top 19377  df-bases 19379  df-topon 19380  df-topsp 19381  df-cld 19498  df-ntr 19499  df-cls 19500  df-nei 19577  df-lp 19615  df-perf 19616  df-cn 19706  df-cnp 19707  df-haus 19794  df-cmp 19865  df-tx 20041  df-hmeo 20234  df-fil 20325  df-fm 20417  df-flim 20418  df-flf 20419  df-xms 20801  df-ms 20802  df-tms 20803  df-cncf 21360  df-limc 22248  df-dv 22249
This theorem is referenced by:  dvfsumge  22401
  Copyright terms: Public domain W3C validator