MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumge Structured version   Unicode version

Theorem dvfsumge 21494
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.)
Hypotheses
Ref Expression
dvfsumle.m  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
dvfsumle.a  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  A )  e.  ( ( M [,] N
) -cn-> RR ) )
dvfsumle.v  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  B  e.  V )
dvfsumle.b  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) )  =  ( x  e.  ( M (,) N )  |->  B ) )
dvfsumle.c  |-  ( x  =  M  ->  A  =  C )
dvfsumle.d  |-  ( x  =  N  ->  A  =  D )
dvfsumle.x  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  X  e.  RR )
dvfsumge.l  |-  ( (
ph  /\  ( k  e.  ( M..^ N )  /\  x  e.  ( k (,) ( k  +  1 ) ) ) )  ->  B  <_  X )
Assertion
Ref Expression
dvfsumge  |-  ( ph  ->  ( D  -  C
)  <_  sum_ k  e.  ( M..^ N ) X )
Distinct variable groups:    A, k    x, k, M    k, N, x    ph, k, x    x, X    x, C    x, D    x, V
Allowed substitution hints:    A( x)    B( x, k)    C( k)    D( k)    V( k)    X( k)

Proof of Theorem dvfsumge
StepHypRef Expression
1 dvfsumle.m . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 df-neg 9598 . . . . . 6  |-  -u A  =  ( 0  -  A )
32mpteq2i 4375 . . . . 5  |-  ( x  e.  ( M [,] N )  |->  -u A
)  =  ( x  e.  ( M [,] N )  |->  ( 0  -  A ) )
4 eqid 2443 . . . . . 6  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
54subcn 20442 . . . . . 6  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
6 0red 9387 . . . . . . 7  |-  ( ph  ->  0  e.  RR )
7 eluzel2 10866 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
81, 7syl 16 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
98zred 10747 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
10 eluzelz 10870 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
111, 10syl 16 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
1211zred 10747 . . . . . . . . 9  |-  ( ph  ->  N  e.  RR )
13 iccssre 11377 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M [,] N
)  C_  RR )
149, 12, 13syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( M [,] N
)  C_  RR )
15 ax-resscn 9339 . . . . . . . 8  |-  RR  C_  CC
1614, 15syl6ss 3368 . . . . . . 7  |-  ( ph  ->  ( M [,] N
)  C_  CC )
1715a1i 11 . . . . . . 7  |-  ( ph  ->  RR  C_  CC )
18 cncfmptc 20487 . . . . . . 7  |-  ( ( 0  e.  RR  /\  ( M [,] N ) 
C_  CC  /\  RR  C_  CC )  ->  ( x  e.  ( M [,] N )  |->  0 )  e.  ( ( M [,] N ) -cn-> RR ) )
196, 16, 17, 18syl3anc 1218 . . . . . 6  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  0 )  e.  ( ( M [,] N
) -cn-> RR ) )
20 dvfsumle.a . . . . . 6  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  A )  e.  ( ( M [,] N
) -cn-> RR ) )
21 resubcl 9673 . . . . . 6  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  -  A
)  e.  RR )
224, 5, 19, 20, 15, 21cncfmpt2ss 20491 . . . . 5  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  ( 0  -  A
) )  e.  ( ( M [,] N
) -cn-> RR ) )
233, 22syl5eqel 2527 . . . 4  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  -u A )  e.  ( ( M [,] N ) -cn-> RR ) )
24 negex 9608 . . . . 5  |-  -u B  e.  _V
2524a1i 11 . . . 4  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  -u B  e. 
_V )
26 reelprrecn 9374 . . . . . 6  |-  RR  e.  { RR ,  CC }
2726a1i 11 . . . . 5  |-  ( ph  ->  RR  e.  { RR ,  CC } )
28 ioossicc 11381 . . . . . . . 8  |-  ( M (,) N )  C_  ( M [,] N )
2928sseli 3352 . . . . . . 7  |-  ( x  e.  ( M (,) N )  ->  x  e.  ( M [,] N
) )
30 cncff 20469 . . . . . . . . . 10  |-  ( ( x  e.  ( M [,] N )  |->  A )  e.  ( ( M [,] N )
-cn-> RR )  ->  (
x  e.  ( M [,] N )  |->  A ) : ( M [,] N ) --> RR )
3120, 30syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  A ) : ( M [,] N ) --> RR )
32 eqid 2443 . . . . . . . . . 10  |-  ( x  e.  ( M [,] N )  |->  A )  =  ( x  e.  ( M [,] N
)  |->  A )
3332fmpt 5864 . . . . . . . . 9  |-  ( A. x  e.  ( M [,] N ) A  e.  RR  <->  ( x  e.  ( M [,] N
)  |->  A ) : ( M [,] N
) --> RR )
3431, 33sylibr 212 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( M [,] N ) A  e.  RR )
3534r19.21bi 2814 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  A  e.  RR )
3629, 35sylan2 474 . . . . . 6  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  A  e.  RR )
3736recnd 9412 . . . . 5  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  A  e.  CC )
38 dvfsumle.v . . . . 5  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  B  e.  V )
39 dvfsumle.b . . . . 5  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) )  =  ( x  e.  ( M (,) N )  |->  B ) )
4027, 37, 38, 39dvmptneg 21440 . . . 4  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  -u A ) )  =  ( x  e.  ( M (,) N ) 
|->  -u B ) )
41 dvfsumle.c . . . . 5  |-  ( x  =  M  ->  A  =  C )
4241negeqd 9604 . . . 4  |-  ( x  =  M  ->  -u A  =  -u C )
43 dvfsumle.d . . . . 5  |-  ( x  =  N  ->  A  =  D )
4443negeqd 9604 . . . 4  |-  ( x  =  N  ->  -u A  =  -u D )
45 dvfsumle.x . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  X  e.  RR )
4645renegcld 9775 . . . 4  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  -u X  e.  RR )
47 dvfsumge.l . . . . 5  |-  ( (
ph  /\  ( k  e.  ( M..^ N )  /\  x  e.  ( k (,) ( k  +  1 ) ) ) )  ->  B  <_  X )
489adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  M  e.  RR )
4948rexrd 9433 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  M  e.  RR* )
50 elfzole1 11560 . . . . . . . . . . . 12  |-  ( k  e.  ( M..^ N
)  ->  M  <_  k )
5150adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  M  <_  k
)
52 iooss1 11335 . . . . . . . . . . 11  |-  ( ( M  e.  RR*  /\  M  <_  k )  ->  (
k (,) ( k  +  1 ) ) 
C_  ( M (,) ( k  +  1 ) ) )
5349, 51, 52syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k (,) ( k  +  1 ) )  C_  ( M (,) ( k  +  1 ) ) )
5412adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  N  e.  RR )
5554rexrd 9433 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  N  e.  RR* )
56 fzofzp1 11624 . . . . . . . . . . . . 13  |-  ( k  e.  ( M..^ N
)  ->  ( k  +  1 )  e.  ( M ... N
) )
5756adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  ( M ... N ) )
58 elfzle2 11455 . . . . . . . . . . . 12  |-  ( ( k  +  1 )  e.  ( M ... N )  ->  (
k  +  1 )  <_  N )
5957, 58syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  <_  N
)
60 iooss2 11336 . . . . . . . . . . 11  |-  ( ( N  e.  RR*  /\  (
k  +  1 )  <_  N )  -> 
( M (,) (
k  +  1 ) )  C_  ( M (,) N ) )
6155, 59, 60syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( M (,) ( k  +  1 ) )  C_  ( M (,) N ) )
6253, 61sstrd 3366 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k (,) ( k  +  1 ) )  C_  ( M (,) N ) )
6362sselda 3356 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k (,) (
k  +  1 ) ) )  ->  x  e.  ( M (,) N
) )
6435adantlr 714 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M [,] N
) )  ->  A  e.  RR )
6529, 64sylan2 474 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  A  e.  RR )
66 eqid 2443 . . . . . . . . . . . . 13  |-  ( x  e.  ( M (,) N )  |->  A )  =  ( x  e.  ( M (,) N
)  |->  A )
6765, 66fmptd 5867 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( M (,) N
)  |->  A ) : ( M (,) N
) --> RR )
68 ioossre 11357 . . . . . . . . . . . 12  |-  ( M (,) N )  C_  RR
69 dvfre 21425 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( M (,) N ) 
|->  A ) : ( M (,) N ) --> RR  /\  ( M (,) N )  C_  RR )  ->  ( RR 
_D  ( x  e.  ( M (,) N
)  |->  A ) ) : dom  ( RR 
_D  ( x  e.  ( M (,) N
)  |->  A ) ) --> RR )
7067, 68, 69sylancl 662 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  ( M (,) N )  |->  A ) ) : dom  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) ) --> RR )
7139adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  ( M (,) N )  |->  A ) )  =  ( x  e.  ( M (,) N )  |->  B ) )
7271dmeqd 5042 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  dom  ( RR  _D  ( x  e.  ( M (,) N ) 
|->  A ) )  =  dom  ( x  e.  ( M (,) N
)  |->  B ) )
7338adantlr 714 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  B  e.  V )
7473ralrimiva 2799 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  A. x  e.  ( M (,) N ) B  e.  V )
75 dmmptg 5335 . . . . . . . . . . . . . 14  |-  ( A. x  e.  ( M (,) N ) B  e.  V  ->  dom  ( x  e.  ( M (,) N )  |->  B )  =  ( M (,) N ) )
7674, 75syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  dom  ( x  e.  ( M (,) N
)  |->  B )  =  ( M (,) N
) )
7772, 76eqtrd 2475 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  dom  ( RR  _D  ( x  e.  ( M (,) N ) 
|->  A ) )  =  ( M (,) N
) )
7871, 77feq12d 5548 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( RR 
_D  ( x  e.  ( M (,) N
)  |->  A ) ) : dom  ( RR 
_D  ( x  e.  ( M (,) N
)  |->  A ) ) --> RR  <->  ( x  e.  ( M (,) N
)  |->  B ) : ( M (,) N
) --> RR ) )
7970, 78mpbid 210 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( M (,) N
)  |->  B ) : ( M (,) N
) --> RR )
80 eqid 2443 . . . . . . . . . . 11  |-  ( x  e.  ( M (,) N )  |->  B )  =  ( x  e.  ( M (,) N
)  |->  B )
8180fmpt 5864 . . . . . . . . . 10  |-  ( A. x  e.  ( M (,) N ) B  e.  RR  <->  ( x  e.  ( M (,) N
)  |->  B ) : ( M (,) N
) --> RR )
8279, 81sylibr 212 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  A. x  e.  ( M (,) N ) B  e.  RR )
8382r19.21bi 2814 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  B  e.  RR )
8463, 83syldan 470 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k (,) (
k  +  1 ) ) )  ->  B  e.  RR )
8584anasss 647 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M..^ N )  /\  x  e.  ( k (,) ( k  +  1 ) ) ) )  ->  B  e.  RR )
8645adantrr 716 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( M..^ N )  /\  x  e.  ( k (,) ( k  +  1 ) ) ) )  ->  X  e.  RR )
8785, 86lenegd 9918 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( M..^ N )  /\  x  e.  ( k (,) ( k  +  1 ) ) ) )  ->  ( B  <_  X  <->  -u X  <_  -u B ) )
8847, 87mpbid 210 . . . 4  |-  ( (
ph  /\  ( k  e.  ( M..^ N )  /\  x  e.  ( k (,) ( k  +  1 ) ) ) )  ->  -u X  <_ 
-u B )
891, 23, 25, 40, 42, 44, 46, 88dvfsumle 21493 . . 3  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) -u X  <_  ( -u D  -  -u C ) )
90 fzofi 11796 . . . . 5  |-  ( M..^ N )  e.  Fin
9190a1i 11 . . . 4  |-  ( ph  ->  ( M..^ N )  e.  Fin )
9245recnd 9412 . . . 4  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  X  e.  CC )
9391, 92fsumneg 13254 . . 3  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) -u X  =  -u sum_ k  e.  ( M..^ N ) X )
949rexrd 9433 . . . . . . . 8  |-  ( ph  ->  M  e.  RR* )
9512rexrd 9433 . . . . . . . 8  |-  ( ph  ->  N  e.  RR* )
96 eluzle 10873 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
971, 96syl 16 . . . . . . . 8  |-  ( ph  ->  M  <_  N )
98 ubicc2 11402 . . . . . . . 8  |-  ( ( M  e.  RR*  /\  N  e.  RR*  /\  M  <_  N )  ->  N  e.  ( M [,] N
) )
9994, 95, 97, 98syl3anc 1218 . . . . . . 7  |-  ( ph  ->  N  e.  ( M [,] N ) )
10043eleq1d 2509 . . . . . . . 8  |-  ( x  =  N  ->  ( A  e.  RR  <->  D  e.  RR ) )
101100rspcv 3069 . . . . . . 7  |-  ( N  e.  ( M [,] N )  ->  ( A. x  e.  ( M [,] N ) A  e.  RR  ->  D  e.  RR ) )
10299, 34, 101sylc 60 . . . . . 6  |-  ( ph  ->  D  e.  RR )
103102recnd 9412 . . . . 5  |-  ( ph  ->  D  e.  CC )
104 lbicc2 11401 . . . . . . . 8  |-  ( ( M  e.  RR*  /\  N  e.  RR*  /\  M  <_  N )  ->  M  e.  ( M [,] N
) )
10594, 95, 97, 104syl3anc 1218 . . . . . . 7  |-  ( ph  ->  M  e.  ( M [,] N ) )
10641eleq1d 2509 . . . . . . . 8  |-  ( x  =  M  ->  ( A  e.  RR  <->  C  e.  RR ) )
107106rspcv 3069 . . . . . . 7  |-  ( M  e.  ( M [,] N )  ->  ( A. x  e.  ( M [,] N ) A  e.  RR  ->  C  e.  RR ) )
108105, 34, 107sylc 60 . . . . . 6  |-  ( ph  ->  C  e.  RR )
109108recnd 9412 . . . . 5  |-  ( ph  ->  C  e.  CC )
110103, 109neg2subd 9736 . . . 4  |-  ( ph  ->  ( -u D  -  -u C )  =  ( C  -  D ) )
111103, 109negsubdi2d 9735 . . . 4  |-  ( ph  -> 
-u ( D  -  C )  =  ( C  -  D ) )
112110, 111eqtr4d 2478 . . 3  |-  ( ph  ->  ( -u D  -  -u C )  =  -u ( D  -  C
) )
11389, 93, 1123brtr3d 4321 . 2  |-  ( ph  -> 
-u sum_ k  e.  ( M..^ N ) X  <_  -u ( D  -  C ) )
114102, 108resubcld 9776 . . 3  |-  ( ph  ->  ( D  -  C
)  e.  RR )
11591, 45fsumrecl 13211 . . 3  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) X  e.  RR )
116114, 115lenegd 9918 . 2  |-  ( ph  ->  ( ( D  -  C )  <_  sum_ k  e.  ( M..^ N ) X  <->  -u sum_ k  e.  ( M..^ N ) X  <_  -u ( D  -  C ) ) )
117113, 116mpbird 232 1  |-  ( ph  ->  ( D  -  C
)  <_  sum_ k  e.  ( M..^ N ) X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715   _Vcvv 2972    C_ wss 3328   {cpr 3879   class class class wbr 4292    e. cmpt 4350   dom cdm 4840   -->wf 5414   ` cfv 5418  (class class class)co 6091   Fincfn 7310   CCcc 9280   RRcr 9281   0cc0 9282   1c1 9283    + caddc 9285   RR*cxr 9417    <_ cle 9419    - cmin 9595   -ucneg 9596   ZZcz 10646   ZZ>=cuz 10861   (,)cioo 11300   [,]cicc 11303   ...cfz 11437  ..^cfzo 11548   sum_csu 13163   TopOpenctopn 14360  ℂfldccnfld 17818   -cn->ccncf 20452    _D cdv 21338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360  ax-addf 9361  ax-mulf 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-of 6320  df-om 6477  df-1st 6577  df-2nd 6578  df-supp 6691  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-map 7216  df-pm 7217  df-ixp 7264  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fsupp 7621  df-fi 7661  df-sup 7691  df-oi 7724  df-card 8109  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-q 10954  df-rp 10992  df-xneg 11089  df-xadd 11090  df-xmul 11091  df-ioo 11304  df-ico 11306  df-icc 11307  df-fz 11438  df-fzo 11549  df-seq 11807  df-exp 11866  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-clim 12966  df-sum 13164  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-starv 14253  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-hom 14262  df-cco 14263  df-rest 14361  df-topn 14362  df-0g 14380  df-gsum 14381  df-topgen 14382  df-pt 14383  df-prds 14386  df-xrs 14440  df-qtop 14445  df-imas 14446  df-xps 14448  df-mre 14524  df-mrc 14525  df-acs 14527  df-mnd 15415  df-submnd 15465  df-mulg 15548  df-cntz 15835  df-cmn 16279  df-psmet 17809  df-xmet 17810  df-met 17811  df-bl 17812  df-mopn 17813  df-fbas 17814  df-fg 17815  df-cnfld 17819  df-top 18503  df-bases 18505  df-topon 18506  df-topsp 18507  df-cld 18623  df-ntr 18624  df-cls 18625  df-nei 18702  df-lp 18740  df-perf 18741  df-cn 18831  df-cnp 18832  df-haus 18919  df-cmp 18990  df-tx 19135  df-hmeo 19328  df-fil 19419  df-fm 19511  df-flim 19512  df-flf 19513  df-xms 19895  df-ms 19896  df-tms 19897  df-cncf 20454  df-limc 21341  df-dv 21342
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator