MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumabs Structured version   Unicode version

Theorem dvfsumabs 22297
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.)
Hypotheses
Ref Expression
dvfsumabs.m  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
dvfsumabs.a  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  A )  e.  ( ( M [,] N
) -cn-> CC ) )
dvfsumabs.v  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  B  e.  V )
dvfsumabs.b  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) )  =  ( x  e.  ( M (,) N )  |->  B ) )
dvfsumabs.c  |-  ( x  =  M  ->  A  =  C )
dvfsumabs.d  |-  ( x  =  N  ->  A  =  D )
dvfsumabs.x  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  X  e.  CC )
dvfsumabs.y  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  Y  e.  RR )
dvfsumabs.l  |-  ( (
ph  /\  ( k  e.  ( M..^ N )  /\  x  e.  ( k (,) ( k  +  1 ) ) ) )  ->  ( abs `  ( X  -  B ) )  <_  Y )
Assertion
Ref Expression
dvfsumabs  |-  ( ph  ->  ( abs `  ( sum_ k  e.  ( M..^ N ) X  -  ( D  -  C
) ) )  <_  sum_ k  e.  ( M..^ N ) Y )
Distinct variable groups:    A, k    x, k, M    k, N, x    ph, k, x    x, X    x, C    x, D    x, V    x, Y
Allowed substitution hints:    A( x)    B( x, k)    C( k)    D( k)    V( k)    X( k)    Y( k)

Proof of Theorem dvfsumabs
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fzofi 12063 . . . . . 6  |-  ( M..^ N )  e.  Fin
21a1i 11 . . . . 5  |-  ( ph  ->  ( M..^ N )  e.  Fin )
3 dvfsumabs.x . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  X  e.  CC )
4 dvfsumabs.m . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 eluzel2 11095 . . . . . . . . . . . . 13  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
64, 5syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ZZ )
7 eluzelz 11099 . . . . . . . . . . . . 13  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
84, 7syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  ZZ )
9 fzval2 11684 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  ( ( M [,] N )  i^i  ZZ ) )
106, 8, 9syl2anc 661 . . . . . . . . . . 11  |-  ( ph  ->  ( M ... N
)  =  ( ( M [,] N )  i^i  ZZ ) )
11 inss1 3703 . . . . . . . . . . 11  |-  ( ( M [,] N )  i^i  ZZ )  C_  ( M [,] N )
1210, 11syl6eqss 3539 . . . . . . . . . 10  |-  ( ph  ->  ( M ... N
)  C_  ( M [,] N ) )
1312sselda 3489 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( M ... N ) )  ->  y  e.  ( M [,] N ) )
14 dvfsumabs.a . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  A )  e.  ( ( M [,] N
) -cn-> CC ) )
15 cncff 21270 . . . . . . . . . . . 12  |-  ( ( x  e.  ( M [,] N )  |->  A )  e.  ( ( M [,] N )
-cn-> CC )  ->  (
x  e.  ( M [,] N )  |->  A ) : ( M [,] N ) --> CC )
1614, 15syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  A ) : ( M [,] N ) --> CC )
17 eqid 2443 . . . . . . . . . . . 12  |-  ( x  e.  ( M [,] N )  |->  A )  =  ( x  e.  ( M [,] N
)  |->  A )
1817fmpt 6037 . . . . . . . . . . 11  |-  ( A. x  e.  ( M [,] N ) A  e.  CC  <->  ( x  e.  ( M [,] N
)  |->  A ) : ( M [,] N
) --> CC )
1916, 18sylibr 212 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  ( M [,] N ) A  e.  CC )
20 nfcsb1v 3436 . . . . . . . . . . . 12  |-  F/_ x [_ y  /  x ]_ A
2120nfel1 2621 . . . . . . . . . . 11  |-  F/ x [_ y  /  x ]_ A  e.  CC
22 csbeq1a 3429 . . . . . . . . . . . 12  |-  ( x  =  y  ->  A  =  [_ y  /  x ]_ A )
2322eleq1d 2512 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( A  e.  CC  <->  [_ y  /  x ]_ A  e.  CC ) )
2421, 23rspc 3190 . . . . . . . . . 10  |-  ( y  e.  ( M [,] N )  ->  ( A. x  e.  ( M [,] N ) A  e.  CC  ->  [_ y  /  x ]_ A  e.  CC ) )
2519, 24mpan9 469 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( M [,] N ) )  ->  [_ y  /  x ]_ A  e.  CC )
2613, 25syldan 470 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( M ... N ) )  ->  [_ y  /  x ]_ A  e.  CC )
2726ralrimiva 2857 . . . . . . 7  |-  ( ph  ->  A. y  e.  ( M ... N )
[_ y  /  x ]_ A  e.  CC )
28 fzofzp1 11888 . . . . . . 7  |-  ( k  e.  ( M..^ N
)  ->  ( k  +  1 )  e.  ( M ... N
) )
29 csbeq1 3423 . . . . . . . . 9  |-  ( y  =  ( k  +  1 )  ->  [_ y  /  x ]_ A  = 
[_ ( k  +  1 )  /  x ]_ A )
3029eleq1d 2512 . . . . . . . 8  |-  ( y  =  ( k  +  1 )  ->  ( [_ y  /  x ]_ A  e.  CC  <->  [_ ( k  +  1 )  /  x ]_ A  e.  CC )
)
3130rspccva 3195 . . . . . . 7  |-  ( ( A. y  e.  ( M ... N )
[_ y  /  x ]_ A  e.  CC  /\  ( k  +  1 )  e.  ( M ... N ) )  ->  [_ ( k  +  1 )  /  x ]_ A  e.  CC )
3227, 28, 31syl2an 477 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  [_ ( k  +  1 )  /  x ]_ A  e.  CC )
33 elfzofz 11822 . . . . . . 7  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ( M ... N ) )
34 csbeq1 3423 . . . . . . . . 9  |-  ( y  =  k  ->  [_ y  /  x ]_ A  = 
[_ k  /  x ]_ A )
3534eleq1d 2512 . . . . . . . 8  |-  ( y  =  k  ->  ( [_ y  /  x ]_ A  e.  CC  <->  [_ k  /  x ]_ A  e.  CC )
)
3635rspccva 3195 . . . . . . 7  |-  ( ( A. y  e.  ( M ... N )
[_ y  /  x ]_ A  e.  CC  /\  k  e.  ( M ... N ) )  ->  [_ k  /  x ]_ A  e.  CC )
3727, 33, 36syl2an 477 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  [_ k  /  x ]_ A  e.  CC )
3832, 37subcld 9936 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( [_ (
k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A )  e.  CC )
392, 3, 38fsumsub 13582 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( X  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) )  =  ( sum_ k  e.  ( M..^ N ) X  -  sum_ k  e.  ( M..^ N ) ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A
) ) )
40 vex 3098 . . . . . . . 8  |-  y  e. 
_V
4140a1i 11 . . . . . . 7  |-  ( y  =  M  ->  y  e.  _V )
42 eqeq2 2458 . . . . . . . . 9  |-  ( y  =  M  ->  (
x  =  y  <->  x  =  M ) )
4342biimpa 484 . . . . . . . 8  |-  ( ( y  =  M  /\  x  =  y )  ->  x  =  M )
44 dvfsumabs.c . . . . . . . 8  |-  ( x  =  M  ->  A  =  C )
4543, 44syl 16 . . . . . . 7  |-  ( ( y  =  M  /\  x  =  y )  ->  A  =  C )
4641, 45csbied 3447 . . . . . 6  |-  ( y  =  M  ->  [_ y  /  x ]_ A  =  C )
4740a1i 11 . . . . . . 7  |-  ( y  =  N  ->  y  e.  _V )
48 eqeq2 2458 . . . . . . . . 9  |-  ( y  =  N  ->  (
x  =  y  <->  x  =  N ) )
4948biimpa 484 . . . . . . . 8  |-  ( ( y  =  N  /\  x  =  y )  ->  x  =  N )
50 dvfsumabs.d . . . . . . . 8  |-  ( x  =  N  ->  A  =  D )
5149, 50syl 16 . . . . . . 7  |-  ( ( y  =  N  /\  x  =  y )  ->  A  =  D )
5247, 51csbied 3447 . . . . . 6  |-  ( y  =  N  ->  [_ y  /  x ]_ A  =  D )
5334, 29, 46, 52, 4, 26telfsumo2 13596 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) (
[_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A )  =  ( D  -  C ) )
5453oveq2d 6297 . . . 4  |-  ( ph  ->  ( sum_ k  e.  ( M..^ N ) X  -  sum_ k  e.  ( M..^ N ) (
[_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) )  =  ( sum_ k  e.  ( M..^ N ) X  -  ( D  -  C
) ) )
5539, 54eqtrd 2484 . . 3  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( X  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) )  =  ( sum_ k  e.  ( M..^ N ) X  -  ( D  -  C ) ) )
5655fveq2d 5860 . 2  |-  ( ph  ->  ( abs `  sum_ k  e.  ( M..^ N ) ( X  -  ( [_ (
k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )  =  ( abs `  ( sum_ k  e.  ( M..^ N ) X  -  ( D  -  C
) ) ) )
573, 38subcld 9936 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( X  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) )  e.  CC )
582, 57fsumcl 13534 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( X  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) )  e.  CC )
5958abscld 13246 . . 3  |-  ( ph  ->  ( abs `  sum_ k  e.  ( M..^ N ) ( X  -  ( [_ (
k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )  e.  RR )
6057abscld 13246 . . . 4  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( abs `  ( X  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )  e.  RR )
612, 60fsumrecl 13535 . . 3  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( abs `  ( X  -  ( [_ (
k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )  e.  RR )
62 dvfsumabs.y . . . 4  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  Y  e.  RR )
632, 62fsumrecl 13535 . . 3  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) Y  e.  RR )
642, 57fsumabs 13594 . . 3  |-  ( ph  ->  ( abs `  sum_ k  e.  ( M..^ N ) ( X  -  ( [_ (
k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )  <_  sum_ k  e.  ( M..^ N ) ( abs `  ( X  -  ( [_ (
k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) ) )
65 elfzoelz 11808 . . . . . . . . . 10  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ZZ )
6665adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  ZZ )
6766zred 10974 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  RR )
6867rexrd 9646 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  RR* )
69 peano2re 9756 . . . . . . . . 9  |-  ( k  e.  RR  ->  (
k  +  1 )  e.  RR )
7067, 69syl 16 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  RR )
7170rexrd 9646 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  RR* )
7267lep1d 10483 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  <_  (
k  +  1 ) )
73 ubicc2 11646 . . . . . . 7  |-  ( ( k  e.  RR*  /\  (
k  +  1 )  e.  RR*  /\  k  <_  ( k  +  1 ) )  ->  (
k  +  1 )  e.  ( k [,] ( k  +  1 ) ) )
7468, 71, 72, 73syl3anc 1229 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  ( k [,] ( k  +  1 ) ) )
75 lbicc2 11645 . . . . . . 7  |-  ( ( k  e.  RR*  /\  (
k  +  1 )  e.  RR*  /\  k  <_  ( k  +  1 ) )  ->  k  e.  ( k [,] (
k  +  1 ) ) )
7668, 71, 72, 75syl3anc 1229 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  ( k [,] ( k  +  1 ) ) )
776zred 10974 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  RR )
7877adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  M  e.  RR )
798zred 10974 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  RR )
8079adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  N  e.  RR )
81 elfzole1 11815 . . . . . . . . . . . 12  |-  ( k  e.  ( M..^ N
)  ->  M  <_  k )
8281adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  M  <_  k
)
8328adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  ( M ... N ) )
84 elfzle2 11699 . . . . . . . . . . . 12  |-  ( ( k  +  1 )  e.  ( M ... N )  ->  (
k  +  1 )  <_  N )
8583, 84syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  <_  N
)
86 iccss 11601 . . . . . . . . . . 11  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  ( M  <_ 
k  /\  ( k  +  1 )  <_  N ) )  -> 
( k [,] (
k  +  1 ) )  C_  ( M [,] N ) )
8778, 80, 82, 85, 86syl22anc 1230 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k [,] ( k  +  1 ) )  C_  ( M [,] N ) )
8887resmptd 5315 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( x  e.  ( M [,] N )  |->  ( ( X  x.  x )  -  A ) )  |`  ( k [,] (
k  +  1 ) ) )  =  ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) )
89 eqid 2443 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
9089subcn 21243 . . . . . . . . . . . 12  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
9190a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
92 iccssre 11615 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M [,] N
)  C_  RR )
9377, 79, 92syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M [,] N
)  C_  RR )
9493adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( M [,] N )  C_  RR )
95 ax-resscn 9552 . . . . . . . . . . . . . 14  |-  RR  C_  CC
9694, 95syl6ss 3501 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( M [,] N )  C_  CC )
97 ssid 3508 . . . . . . . . . . . . . 14  |-  CC  C_  CC
9897a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  CC  C_  CC )
99 cncfmptc 21288 . . . . . . . . . . . . 13  |-  ( ( X  e.  CC  /\  ( M [,] N ) 
C_  CC  /\  CC  C_  CC )  ->  ( x  e.  ( M [,] N )  |->  X )  e.  ( ( M [,] N ) -cn-> CC ) )
1003, 96, 98, 99syl3anc 1229 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( M [,] N
)  |->  X )  e.  ( ( M [,] N ) -cn-> CC ) )
101 cncfmptid 21289 . . . . . . . . . . . . 13  |-  ( ( ( M [,] N
)  C_  CC  /\  CC  C_  CC )  ->  (
x  e.  ( M [,] N )  |->  x )  e.  ( ( M [,] N )
-cn-> CC ) )
10296, 97, 101sylancl 662 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( M [,] N
)  |->  x )  e.  ( ( M [,] N ) -cn-> CC ) )
103100, 102mulcncf 21732 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( M [,] N
)  |->  ( X  x.  x ) )  e.  ( ( M [,] N ) -cn-> CC ) )
10414adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( M [,] N
)  |->  A )  e.  ( ( M [,] N ) -cn-> CC ) )
10589, 91, 103, 104cncfmpt2f 21291 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( M [,] N
)  |->  ( ( X  x.  x )  -  A ) )  e.  ( ( M [,] N ) -cn-> CC ) )
106 rescncf 21274 . . . . . . . . . 10  |-  ( ( k [,] ( k  +  1 ) ) 
C_  ( M [,] N )  ->  (
( x  e.  ( M [,] N ) 
|->  ( ( X  x.  x )  -  A
) )  e.  ( ( M [,] N
) -cn-> CC )  ->  (
( x  e.  ( M [,] N ) 
|->  ( ( X  x.  x )  -  A
) )  |`  (
k [,] ( k  +  1 ) ) )  e.  ( ( k [,] ( k  +  1 ) )
-cn-> CC ) ) )
10787, 105, 106sylc 60 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( x  e.  ( M [,] N )  |->  ( ( X  x.  x )  -  A ) )  |`  ( k [,] (
k  +  1 ) ) )  e.  ( ( k [,] (
k  +  1 ) ) -cn-> CC ) )
10888, 107eqeltrrd 2532 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) )  e.  ( ( k [,] ( k  +  1 ) ) -cn-> CC ) )
10995a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  RR  C_  CC )
11087, 94sstrd 3499 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k [,] ( k  +  1 ) )  C_  RR )
11187sselda 3489 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k [,] (
k  +  1 ) ) )  ->  x  e.  ( M [,] N
) )
1123adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M [,] N
) )  ->  X  e.  CC )
11396sselda 3489 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M [,] N
) )  ->  x  e.  CC )
114112, 113mulcld 9619 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M [,] N
) )  ->  ( X  x.  x )  e.  CC )
11519r19.21bi 2812 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  A  e.  CC )
116115adantlr 714 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M [,] N
) )  ->  A  e.  CC )
117114, 116subcld 9936 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M [,] N
) )  ->  (
( X  x.  x
)  -  A )  e.  CC )
118111, 117syldan 470 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k [,] (
k  +  1 ) ) )  ->  (
( X  x.  x
)  -  A )  e.  CC )
11989tgioo2 21181 . . . . . . . . . . . 12  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
120 iccntr 21199 . . . . . . . . . . . . 13  |-  ( ( k  e.  RR  /\  ( k  +  1 )  e.  RR )  ->  ( ( int `  ( topGen `  ran  (,) )
) `  ( k [,] ( k  +  1 ) ) )  =  ( k (,) (
k  +  1 ) ) )
12167, 70, 120syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( int `  ( topGen `  ran  (,) )
) `  ( k [,] ( k  +  1 ) ) )  =  ( k (,) (
k  +  1 ) ) )
122109, 110, 118, 119, 89, 121dvmptntr 22247 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  (
k [,] ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) ) )  =  ( RR  _D  (
x  e.  ( k (,) ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) )
123 reelprrecn 9587 . . . . . . . . . . . . 13  |-  RR  e.  { RR ,  CC }
124123a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  RR  e.  { RR ,  CC } )
125 ioossicc 11619 . . . . . . . . . . . . . 14  |-  ( M (,) N )  C_  ( M [,] N )
126125sseli 3485 . . . . . . . . . . . . 13  |-  ( x  e.  ( M (,) N )  ->  x  e.  ( M [,] N
) )
127126, 117sylan2 474 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  (
( X  x.  x
)  -  A )  e.  CC )
128 ovex 6309 . . . . . . . . . . . . 13  |-  ( X  -  B )  e. 
_V
129128a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  ( X  -  B )  e.  _V )
130126, 114sylan2 474 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  ( X  x.  x )  e.  CC )
1313adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  X  e.  CC )
132125, 96syl5ss 3500 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( M (,) N )  C_  CC )
133132sselda 3489 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  x  e.  CC )
134 1cnd 9615 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  1  e.  CC )
135109sselda 3489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  RR )  ->  x  e.  CC )
136 1cnd 9615 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  RR )  ->  1  e.  CC )
137124dvmptid 22233 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  RR  |->  x ) )  =  ( x  e.  RR  |->  1 ) )
138125, 94syl5ss 3500 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( M (,) N )  C_  RR )
139 iooretop 21146 . . . . . . . . . . . . . . . . 17  |-  ( M (,) N )  e.  ( topGen `  ran  (,) )
140139a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( M (,) N )  e.  (
topGen `  ran  (,) )
)
141124, 135, 136, 137, 138, 119, 89, 140dvmptres 22239 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  ( M (,) N )  |->  x ) )  =  ( x  e.  ( M (,) N )  |->  1 ) )
142124, 133, 134, 141, 3dvmptcmul 22240 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  ( M (,) N )  |->  ( X  x.  x ) ) )  =  ( x  e.  ( M (,) N )  |->  ( X  x.  1 ) ) )
1433mulid1d 9616 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( X  x.  1 )  =  X )
144143mpteq2dv 4524 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( M (,) N
)  |->  ( X  x.  1 ) )  =  ( x  e.  ( M (,) N ) 
|->  X ) )
145142, 144eqtrd 2484 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  ( M (,) N )  |->  ( X  x.  x ) ) )  =  ( x  e.  ( M (,) N )  |->  X ) )
146126, 116sylan2 474 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  A  e.  CC )
147 dvfsumabs.v . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  B  e.  V )
148147adantlr 714 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  B  e.  V )
149 dvfsumabs.b . . . . . . . . . . . . . 14  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) )  =  ( x  e.  ( M (,) N )  |->  B ) )
150149adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  ( M (,) N )  |->  A ) )  =  ( x  e.  ( M (,) N )  |->  B ) )
151124, 130, 131, 145, 146, 148, 150dvmptsub 22243 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  ( M (,) N )  |->  ( ( X  x.  x
)  -  A ) ) )  =  ( x  e.  ( M (,) N )  |->  ( X  -  B ) ) )
15278rexrd 9646 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  M  e.  RR* )
153 iooss1 11573 . . . . . . . . . . . . . 14  |-  ( ( M  e.  RR*  /\  M  <_  k )  ->  (
k (,) ( k  +  1 ) ) 
C_  ( M (,) ( k  +  1 ) ) )
154152, 82, 153syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k (,) ( k  +  1 ) )  C_  ( M (,) ( k  +  1 ) ) )
15580rexrd 9646 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  N  e.  RR* )
156 iooss2 11574 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR*  /\  (
k  +  1 )  <_  N )  -> 
( M (,) (
k  +  1 ) )  C_  ( M (,) N ) )
157155, 85, 156syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( M (,) ( k  +  1 ) )  C_  ( M (,) N ) )
158154, 157sstrd 3499 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k (,) ( k  +  1 ) )  C_  ( M (,) N ) )
159 iooretop 21146 . . . . . . . . . . . . 13  |-  ( k (,) ( k  +  1 ) )  e.  ( topGen `  ran  (,) )
160159a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k (,) ( k  +  1 ) )  e.  (
topGen `  ran  (,) )
)
161124, 127, 129, 151, 158, 119, 89, 160dvmptres 22239 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  (
k (,) ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) ) )  =  ( x  e.  ( k (,) ( k  +  1 ) ) 
|->  ( X  -  B
) ) )
162122, 161eqtrd 2484 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  (
k [,] ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) ) )  =  ( x  e.  ( k (,) ( k  +  1 ) ) 
|->  ( X  -  B
) ) )
163162dmeqd 5195 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  dom  ( RR  _D  ( x  e.  ( k [,] ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) ) )  =  dom  ( x  e.  ( k (,) (
k  +  1 ) )  |->  ( X  -  B ) ) )
164 eqid 2443 . . . . . . . . . 10  |-  ( x  e.  ( k (,) ( k  +  1 ) )  |->  ( X  -  B ) )  =  ( x  e.  ( k (,) (
k  +  1 ) )  |->  ( X  -  B ) )
165128, 164dmmpti 5700 . . . . . . . . 9  |-  dom  (
x  e.  ( k (,) ( k  +  1 ) )  |->  ( X  -  B ) )  =  ( k (,) ( k  +  1 ) )
166163, 165syl6eq 2500 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  dom  ( RR  _D  ( x  e.  ( k [,] ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) ) )  =  ( k (,) (
k  +  1 ) ) )
167162adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k (,) (
k  +  1 ) ) )  ->  ( RR  _D  ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) )  =  ( x  e.  ( k (,) (
k  +  1 ) )  |->  ( X  -  B ) ) )
168167fveq1d 5858 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k (,) (
k  +  1 ) ) )  ->  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  x
)  =  ( ( x  e.  ( k (,) ( k  +  1 ) )  |->  ( X  -  B ) ) `  x ) )
169 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k (,) (
k  +  1 ) ) )  ->  x  e.  ( k (,) (
k  +  1 ) ) )
170164fvmpt2 5948 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( k (,) ( k  +  1 ) )  /\  ( X  -  B
)  e.  _V )  ->  ( ( x  e.  ( k (,) (
k  +  1 ) )  |->  ( X  -  B ) ) `  x )  =  ( X  -  B ) )
171169, 128, 170sylancl 662 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k (,) (
k  +  1 ) ) )  ->  (
( x  e.  ( k (,) ( k  +  1 ) ) 
|->  ( X  -  B
) ) `  x
)  =  ( X  -  B ) )
172168, 171eqtrd 2484 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k (,) (
k  +  1 ) ) )  ->  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  x
)  =  ( X  -  B ) )
173172fveq2d 5860 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k (,) (
k  +  1 ) ) )  ->  ( abs `  ( ( RR 
_D  ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) ) `
 x ) )  =  ( abs `  ( X  -  B )
) )
174 dvfsumabs.l . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  ( M..^ N )  /\  x  e.  ( k (,) ( k  +  1 ) ) ) )  ->  ( abs `  ( X  -  B ) )  <_  Y )
175174anassrs 648 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k (,) (
k  +  1 ) ) )  ->  ( abs `  ( X  -  B ) )  <_  Y )
176173, 175eqbrtrd 4457 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k (,) (
k  +  1 ) ) )  ->  ( abs `  ( ( RR 
_D  ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) ) `
 x ) )  <_  Y )
177176ralrimiva 2857 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  A. x  e.  ( k (,) ( k  +  1 ) ) ( abs `  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  x
) )  <_  Y
)
178 nfcv 2605 . . . . . . . . . . . 12  |-  F/_ x abs
179 nfcv 2605 . . . . . . . . . . . . . 14  |-  F/_ x RR
180 nfcv 2605 . . . . . . . . . . . . . 14  |-  F/_ x  _D
181 nfmpt1 4526 . . . . . . . . . . . . . 14  |-  F/_ x
( x  e.  ( k [,] ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) )
182179, 180, 181nfov 6307 . . . . . . . . . . . . 13  |-  F/_ x
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) )
183 nfcv 2605 . . . . . . . . . . . . 13  |-  F/_ x
y
184182, 183nffv 5863 . . . . . . . . . . . 12  |-  F/_ x
( ( RR  _D  ( x  e.  (
k [,] ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) ) ) `  y )
185178, 184nffv 5863 . . . . . . . . . . 11  |-  F/_ x
( abs `  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  y
) )
186 nfcv 2605 . . . . . . . . . . 11  |-  F/_ x  <_
187 nfcv 2605 . . . . . . . . . . 11  |-  F/_ x Y
188185, 186, 187nfbr 4481 . . . . . . . . . 10  |-  F/ x
( abs `  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  y
) )  <_  Y
189 fveq2 5856 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  x
)  =  ( ( RR  _D  ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) ) `  y ) )
190189fveq2d 5860 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( abs `  ( ( RR 
_D  ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) ) `
 x ) )  =  ( abs `  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  y
) ) )
191190breq1d 4447 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( abs `  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  x
) )  <_  Y  <->  ( abs `  ( ( RR  _D  ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) ) `  y ) )  <_  Y )
)
192188, 191rspc 3190 . . . . . . . . 9  |-  ( y  e.  ( k (,) ( k  +  1 ) )  ->  ( A. x  e.  (
k (,) ( k  +  1 ) ) ( abs `  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  x
) )  <_  Y  ->  ( abs `  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  y
) )  <_  Y
) )
193177, 192mpan9 469 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  y  e.  ( k (,) (
k  +  1 ) ) )  ->  ( abs `  ( ( RR 
_D  ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) ) `
 y ) )  <_  Y )
19467, 70, 108, 166, 62, 193dvlip 22267 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( ( k  +  1 )  e.  ( k [,] ( k  +  1 ) )  /\  k  e.  ( k [,] (
k  +  1 ) ) ) )  -> 
( abs `  (
( ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `  ( k  +  1 ) )  -  (
( x  e.  ( k [,] ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) ) `  k
) ) )  <_ 
( Y  x.  ( abs `  ( ( k  +  1 )  -  k ) ) ) )
195194ex 434 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( ( k  +  1 )  e.  ( k [,] ( k  +  1 ) )  /\  k  e.  ( k [,] (
k  +  1 ) ) )  ->  ( abs `  ( ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) `  ( k  +  1 ) )  -  ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `
 k ) ) )  <_  ( Y  x.  ( abs `  (
( k  +  1 )  -  k ) ) ) ) )
19674, 76, 195mp2and 679 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( abs `  (
( ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `  ( k  +  1 ) )  -  (
( x  e.  ( k [,] ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) ) `  k
) ) )  <_ 
( Y  x.  ( abs `  ( ( k  +  1 )  -  k ) ) ) )
197 ovex 6309 . . . . . . . . 9  |-  ( ( X  x.  ( k  +  1 ) )  -  [_ ( k  +  1 )  /  x ]_ A )  e. 
_V
198 nfcv 2605 . . . . . . . . . 10  |-  F/_ x
( k  +  1 )
199 nfcv 2605 . . . . . . . . . . 11  |-  F/_ x
( X  x.  (
k  +  1 ) )
200 nfcv 2605 . . . . . . . . . . 11  |-  F/_ x  -
201 nfcsb1v 3436 . . . . . . . . . . 11  |-  F/_ x [_ ( k  +  1 )  /  x ]_ A
202199, 200, 201nfov 6307 . . . . . . . . . 10  |-  F/_ x
( ( X  x.  ( k  +  1 ) )  -  [_ ( k  +  1 )  /  x ]_ A )
203 oveq2 6289 . . . . . . . . . . 11  |-  ( x  =  ( k  +  1 )  ->  ( X  x.  x )  =  ( X  x.  ( k  +  1 ) ) )
204 csbeq1a 3429 . . . . . . . . . . 11  |-  ( x  =  ( k  +  1 )  ->  A  =  [_ ( k  +  1 )  /  x ]_ A )
205203, 204oveq12d 6299 . . . . . . . . . 10  |-  ( x  =  ( k  +  1 )  ->  (
( X  x.  x
)  -  A )  =  ( ( X  x.  ( k  +  1 ) )  -  [_ ( k  +  1 )  /  x ]_ A ) )
206 eqid 2443 . . . . . . . . . 10  |-  ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) )  =  ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) )
207198, 202, 205, 206fvmptf 5957 . . . . . . . . 9  |-  ( ( ( k  +  1 )  e.  ( k [,] ( k  +  1 ) )  /\  ( ( X  x.  ( k  +  1 ) )  -  [_ ( k  +  1 )  /  x ]_ A )  e.  _V )  ->  ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `
 ( k  +  1 ) )  =  ( ( X  x.  ( k  +  1 ) )  -  [_ ( k  +  1 )  /  x ]_ A ) )
20874, 197, 207sylancl 662 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `
 ( k  +  1 ) )  =  ( ( X  x.  ( k  +  1 ) )  -  [_ ( k  +  1 )  /  x ]_ A ) )
20967recnd 9625 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  CC )
2103, 209mulcld 9619 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( X  x.  k )  e.  CC )
211210, 37subcld 9936 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( X  x.  k )  -  [_ k  /  x ]_ A )  e.  CC )
212 nfcv 2605 . . . . . . . . . 10  |-  F/_ x
k
213 nfcv 2605 . . . . . . . . . . 11  |-  F/_ x
( X  x.  k
)
214 nfcsb1v 3436 . . . . . . . . . . 11  |-  F/_ x [_ k  /  x ]_ A
215213, 200, 214nfov 6307 . . . . . . . . . 10  |-  F/_ x
( ( X  x.  k )  -  [_ k  /  x ]_ A
)
216 oveq2 6289 . . . . . . . . . . 11  |-  ( x  =  k  ->  ( X  x.  x )  =  ( X  x.  k ) )
217 csbeq1a 3429 . . . . . . . . . . 11  |-  ( x  =  k  ->  A  =  [_ k  /  x ]_ A )
218216, 217oveq12d 6299 . . . . . . . . . 10  |-  ( x  =  k  ->  (
( X  x.  x
)  -  A )  =  ( ( X  x.  k )  -  [_ k  /  x ]_ A ) )
219212, 215, 218, 206fvmptf 5957 . . . . . . . . 9  |-  ( ( k  e.  ( k [,] ( k  +  1 ) )  /\  ( ( X  x.  k )  -  [_ k  /  x ]_ A
)  e.  CC )  ->  ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `
 k )  =  ( ( X  x.  k )  -  [_ k  /  x ]_ A
) )
22076, 211, 219syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `
 k )  =  ( ( X  x.  k )  -  [_ k  /  x ]_ A
) )
221208, 220oveq12d 6299 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) `  ( k  +  1 ) )  -  ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `
 k ) )  =  ( ( ( X  x.  ( k  +  1 ) )  -  [_ ( k  +  1 )  /  x ]_ A )  -  ( ( X  x.  k )  -  [_ k  /  x ]_ A
) ) )
222 peano2cn 9755 . . . . . . . . . 10  |-  ( k  e.  CC  ->  (
k  +  1 )  e.  CC )
223209, 222syl 16 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  CC )
2243, 223mulcld 9619 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( X  x.  ( k  +  1 ) )  e.  CC )
225224, 210, 32, 37sub4d 9985 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( ( X  x.  ( k  +  1 ) )  -  ( X  x.  k ) )  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) )  =  ( ( ( X  x.  (
k  +  1 ) )  -  [_ (
k  +  1 )  /  x ]_ A
)  -  ( ( X  x.  k )  -  [_ k  /  x ]_ A ) ) )
226 1cnd 9615 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  1  e.  CC )
227209, 226pncan2d 9938 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( k  +  1 )  -  k )  =  1 )
228227oveq2d 6297 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( X  x.  ( ( k  +  1 )  -  k
) )  =  ( X  x.  1 ) )
2293, 223, 209subdid 10018 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( X  x.  ( ( k  +  1 )  -  k
) )  =  ( ( X  x.  (
k  +  1 ) )  -  ( X  x.  k ) ) )
230228, 229, 1433eqtr3d 2492 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( X  x.  ( k  +  1 ) )  -  ( X  x.  k
) )  =  X )
231230oveq1d 6296 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( ( X  x.  ( k  +  1 ) )  -  ( X  x.  k ) )  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) )  =  ( X  -  ( [_ (
k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )
232221, 225, 2313eqtr2rd 2491 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( X  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) )  =  ( ( ( x  e.  ( k [,] ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) ) `  (
k  +  1 ) )  -  ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) `  k ) ) )
233232fveq2d 5860 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( abs `  ( X  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )  =  ( abs `  ( ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `
 ( k  +  1 ) )  -  ( ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `  k ) ) ) )
234227fveq2d 5860 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( abs `  (
( k  +  1 )  -  k ) )  =  ( abs `  1 ) )
235 abs1 13109 . . . . . . . 8  |-  ( abs `  1 )  =  1
236234, 235syl6eq 2500 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( abs `  (
( k  +  1 )  -  k ) )  =  1 )
237236oveq2d 6297 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( Y  x.  ( abs `  ( ( k  +  1 )  -  k ) ) )  =  ( Y  x.  1 ) )
23862recnd 9625 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  Y  e.  CC )
239238mulid1d 9616 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( Y  x.  1 )  =  Y )
240237, 239eqtr2d 2485 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  Y  =  ( Y  x.  ( abs `  ( ( k  +  1 )  -  k
) ) ) )
241196, 233, 2403brtr4d 4467 . . . 4  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( abs `  ( X  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )  <_  Y )
2422, 60, 62, 241fsumle 13592 . . 3  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( abs `  ( X  -  ( [_ (
k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )  <_  sum_ k  e.  ( M..^ N ) Y )
24359, 61, 63, 64, 242letrd 9742 . 2  |-  ( ph  ->  ( abs `  sum_ k  e.  ( M..^ N ) ( X  -  ( [_ (
k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )  <_  sum_ k  e.  ( M..^ N ) Y )
24456, 243eqbrtrrd 4459 1  |-  ( ph  ->  ( abs `  ( sum_ k  e.  ( M..^ N ) X  -  ( D  -  C
) ) )  <_  sum_ k  e.  ( M..^ N ) Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1383    e. wcel 1804   A.wral 2793   _Vcvv 3095   [_csb 3420    i^i cin 3460    C_ wss 3461   {cpr 4016   class class class wbr 4437    |-> cmpt 4495   dom cdm 4989   ran crn 4990    |` cres 4991   -->wf 5574   ` cfv 5578  (class class class)co 6281   Fincfn 7518   CCcc 9493   RRcr 9494   1c1 9496    + caddc 9498    x. cmul 9500   RR*cxr 9630    <_ cle 9632    - cmin 9810   ZZcz 10870   ZZ>=cuz 11090   (,)cioo 11538   [,]cicc 11541   ...cfz 11681  ..^cfzo 11803   abscabs 13046   sum_csu 13487   TopOpenctopn 14696   topGenctg 14712  ℂfldccnfld 18294   intcnt 19391    Cn ccn 19598    tX ctx 19934   -cn->ccncf 21253    _D cdv 22140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-nn 10543  df-2 10600  df-3 10601  df-4 10602  df-5 10603  df-6 10604  df-7 10605  df-8 10606  df-9 10607  df-10 10608  df-n0 10802  df-z 10871  df-dec 10985  df-uz 11091  df-q 11192  df-rp 11230  df-xneg 11327  df-xadd 11328  df-xmul 11329  df-ioo 11542  df-ico 11544  df-icc 11545  df-fz 11682  df-fzo 11804  df-seq 12087  df-exp 12146  df-hash 12385  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-clim 13290  df-sum 13488  df-struct 14511  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-mulr 14588  df-starv 14589  df-sca 14590  df-vsca 14591  df-ip 14592  df-tset 14593  df-ple 14594  df-ds 14596  df-unif 14597  df-hom 14598  df-cco 14599  df-rest 14697  df-topn 14698  df-0g 14716  df-gsum 14717  df-topgen 14718  df-pt 14719  df-prds 14722  df-xrs 14776  df-qtop 14781  df-imas 14782  df-xps 14784  df-mre 14860  df-mrc 14861  df-acs 14863  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15841  df-mulg 15934  df-cntz 16229  df-cmn 16674  df-psmet 18285  df-xmet 18286  df-met 18287  df-bl 18288  df-mopn 18289  df-fbas 18290  df-fg 18291  df-cnfld 18295  df-top 19272  df-bases 19274  df-topon 19275  df-topsp 19276  df-cld 19393  df-ntr 19394  df-cls 19395  df-nei 19472  df-lp 19510  df-perf 19511  df-cn 19601  df-cnp 19602  df-haus 19689  df-cmp 19760  df-tx 19936  df-hmeo 20129  df-fil 20220  df-fm 20312  df-flim 20313  df-flf 20314  df-xms 20696  df-ms 20697  df-tms 20698  df-cncf 21255  df-limc 22143  df-dv 22144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator