MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumabs Structured version   Unicode version

Theorem dvfsumabs 21336
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.)
Hypotheses
Ref Expression
dvfsumabs.m  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
dvfsumabs.a  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  A )  e.  ( ( M [,] N
) -cn-> CC ) )
dvfsumabs.v  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  B  e.  V )
dvfsumabs.b  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) )  =  ( x  e.  ( M (,) N )  |->  B ) )
dvfsumabs.c  |-  ( x  =  M  ->  A  =  C )
dvfsumabs.d  |-  ( x  =  N  ->  A  =  D )
dvfsumabs.x  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  X  e.  CC )
dvfsumabs.y  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  Y  e.  RR )
dvfsumabs.l  |-  ( (
ph  /\  ( k  e.  ( M..^ N )  /\  x  e.  ( k (,) ( k  +  1 ) ) ) )  ->  ( abs `  ( X  -  B ) )  <_  Y )
Assertion
Ref Expression
dvfsumabs  |-  ( ph  ->  ( abs `  ( sum_ k  e.  ( M..^ N ) X  -  ( D  -  C
) ) )  <_  sum_ k  e.  ( M..^ N ) Y )
Distinct variable groups:    A, k    x, k, M    k, N, x    ph, k, x    x, X    x, C    x, D    x, V    x, Y
Allowed substitution hints:    A( x)    B( x, k)    C( k)    D( k)    V( k)    X( k)    Y( k)

Proof of Theorem dvfsumabs
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fzofi 11779 . . . . . 6  |-  ( M..^ N )  e.  Fin
21a1i 11 . . . . 5  |-  ( ph  ->  ( M..^ N )  e.  Fin )
3 dvfsumabs.x . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  X  e.  CC )
4 dvfsumabs.m . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 eluzel2 10853 . . . . . . . . . . . . 13  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
64, 5syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ZZ )
7 eluzelz 10857 . . . . . . . . . . . . 13  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
84, 7syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  ZZ )
9 fzval2 11426 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  ( ( M [,] N )  i^i  ZZ ) )
106, 8, 9syl2anc 654 . . . . . . . . . . 11  |-  ( ph  ->  ( M ... N
)  =  ( ( M [,] N )  i^i  ZZ ) )
11 inss1 3558 . . . . . . . . . . 11  |-  ( ( M [,] N )  i^i  ZZ )  C_  ( M [,] N )
1210, 11syl6eqss 3394 . . . . . . . . . 10  |-  ( ph  ->  ( M ... N
)  C_  ( M [,] N ) )
1312sselda 3344 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( M ... N ) )  ->  y  e.  ( M [,] N ) )
14 dvfsumabs.a . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  A )  e.  ( ( M [,] N
) -cn-> CC ) )
15 cncff 20310 . . . . . . . . . . . 12  |-  ( ( x  e.  ( M [,] N )  |->  A )  e.  ( ( M [,] N )
-cn-> CC )  ->  (
x  e.  ( M [,] N )  |->  A ) : ( M [,] N ) --> CC )
1614, 15syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  A ) : ( M [,] N ) --> CC )
17 eqid 2433 . . . . . . . . . . . 12  |-  ( x  e.  ( M [,] N )  |->  A )  =  ( x  e.  ( M [,] N
)  |->  A )
1817fmpt 5852 . . . . . . . . . . 11  |-  ( A. x  e.  ( M [,] N ) A  e.  CC  <->  ( x  e.  ( M [,] N
)  |->  A ) : ( M [,] N
) --> CC )
1916, 18sylibr 212 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  ( M [,] N ) A  e.  CC )
20 nfcsb1v 3292 . . . . . . . . . . . 12  |-  F/_ x [_ y  /  x ]_ A
2120nfel1 2579 . . . . . . . . . . 11  |-  F/ x [_ y  /  x ]_ A  e.  CC
22 csbeq1a 3285 . . . . . . . . . . . 12  |-  ( x  =  y  ->  A  =  [_ y  /  x ]_ A )
2322eleq1d 2499 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( A  e.  CC  <->  [_ y  /  x ]_ A  e.  CC ) )
2421, 23rspc 3056 . . . . . . . . . 10  |-  ( y  e.  ( M [,] N )  ->  ( A. x  e.  ( M [,] N ) A  e.  CC  ->  [_ y  /  x ]_ A  e.  CC ) )
2519, 24mpan9 466 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( M [,] N ) )  ->  [_ y  /  x ]_ A  e.  CC )
2613, 25syldan 467 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( M ... N ) )  ->  [_ y  /  x ]_ A  e.  CC )
2726ralrimiva 2789 . . . . . . 7  |-  ( ph  ->  A. y  e.  ( M ... N )
[_ y  /  x ]_ A  e.  CC )
28 fzofzp1 11607 . . . . . . 7  |-  ( k  e.  ( M..^ N
)  ->  ( k  +  1 )  e.  ( M ... N
) )
29 csbeq1 3279 . . . . . . . . 9  |-  ( y  =  ( k  +  1 )  ->  [_ y  /  x ]_ A  = 
[_ ( k  +  1 )  /  x ]_ A )
3029eleq1d 2499 . . . . . . . 8  |-  ( y  =  ( k  +  1 )  ->  ( [_ y  /  x ]_ A  e.  CC  <->  [_ ( k  +  1 )  /  x ]_ A  e.  CC )
)
3130rspccva 3061 . . . . . . 7  |-  ( ( A. y  e.  ( M ... N )
[_ y  /  x ]_ A  e.  CC  /\  ( k  +  1 )  e.  ( M ... N ) )  ->  [_ ( k  +  1 )  /  x ]_ A  e.  CC )
3227, 28, 31syl2an 474 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  [_ ( k  +  1 )  /  x ]_ A  e.  CC )
33 elfzofz 11550 . . . . . . 7  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ( M ... N ) )
34 csbeq1 3279 . . . . . . . . 9  |-  ( y  =  k  ->  [_ y  /  x ]_ A  = 
[_ k  /  x ]_ A )
3534eleq1d 2499 . . . . . . . 8  |-  ( y  =  k  ->  ( [_ y  /  x ]_ A  e.  CC  <->  [_ k  /  x ]_ A  e.  CC )
)
3635rspccva 3061 . . . . . . 7  |-  ( ( A. y  e.  ( M ... N )
[_ y  /  x ]_ A  e.  CC  /\  k  e.  ( M ... N ) )  ->  [_ k  /  x ]_ A  e.  CC )
3727, 33, 36syl2an 474 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  [_ k  /  x ]_ A  e.  CC )
3832, 37subcld 9706 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( [_ (
k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A )  e.  CC )
392, 3, 38fsumsub 13237 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( X  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) )  =  ( sum_ k  e.  ( M..^ N ) X  -  sum_ k  e.  ( M..^ N ) ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A
) ) )
40 vex 2965 . . . . . . . 8  |-  y  e. 
_V
4140a1i 11 . . . . . . 7  |-  ( y  =  M  ->  y  e.  _V )
42 eqeq2 2442 . . . . . . . . 9  |-  ( y  =  M  ->  (
x  =  y  <->  x  =  M ) )
4342biimpa 481 . . . . . . . 8  |-  ( ( y  =  M  /\  x  =  y )  ->  x  =  M )
44 dvfsumabs.c . . . . . . . 8  |-  ( x  =  M  ->  A  =  C )
4543, 44syl 16 . . . . . . 7  |-  ( ( y  =  M  /\  x  =  y )  ->  A  =  C )
4641, 45csbied 3302 . . . . . 6  |-  ( y  =  M  ->  [_ y  /  x ]_ A  =  C )
4740a1i 11 . . . . . . 7  |-  ( y  =  N  ->  y  e.  _V )
48 eqeq2 2442 . . . . . . . . 9  |-  ( y  =  N  ->  (
x  =  y  <->  x  =  N ) )
4948biimpa 481 . . . . . . . 8  |-  ( ( y  =  N  /\  x  =  y )  ->  x  =  N )
50 dvfsumabs.d . . . . . . . 8  |-  ( x  =  N  ->  A  =  D )
5149, 50syl 16 . . . . . . 7  |-  ( ( y  =  N  /\  x  =  y )  ->  A  =  D )
5247, 51csbied 3302 . . . . . 6  |-  ( y  =  N  ->  [_ y  /  x ]_ A  =  D )
5334, 29, 46, 52, 4, 26fsumtscopo2 13248 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) (
[_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A )  =  ( D  -  C ) )
5453oveq2d 6096 . . . 4  |-  ( ph  ->  ( sum_ k  e.  ( M..^ N ) X  -  sum_ k  e.  ( M..^ N ) (
[_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) )  =  ( sum_ k  e.  ( M..^ N ) X  -  ( D  -  C
) ) )
5539, 54eqtrd 2465 . . 3  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( X  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) )  =  ( sum_ k  e.  ( M..^ N ) X  -  ( D  -  C ) ) )
5655fveq2d 5683 . 2  |-  ( ph  ->  ( abs `  sum_ k  e.  ( M..^ N ) ( X  -  ( [_ (
k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )  =  ( abs `  ( sum_ k  e.  ( M..^ N ) X  -  ( D  -  C
) ) ) )
573, 38subcld 9706 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( X  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) )  e.  CC )
582, 57fsumcl 13193 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( X  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) )  e.  CC )
5958abscld 12905 . . 3  |-  ( ph  ->  ( abs `  sum_ k  e.  ( M..^ N ) ( X  -  ( [_ (
k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )  e.  RR )
6057abscld 12905 . . . 4  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( abs `  ( X  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )  e.  RR )
612, 60fsumrecl 13194 . . 3  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( abs `  ( X  -  ( [_ (
k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )  e.  RR )
62 dvfsumabs.y . . . 4  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  Y  e.  RR )
632, 62fsumrecl 13194 . . 3  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) Y  e.  RR )
642, 57fsumabs 13246 . . 3  |-  ( ph  ->  ( abs `  sum_ k  e.  ( M..^ N ) ( X  -  ( [_ (
k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )  <_  sum_ k  e.  ( M..^ N ) ( abs `  ( X  -  ( [_ (
k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) ) )
65 elfzoelz 11536 . . . . . . . . . 10  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ZZ )
6665adantl 463 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  ZZ )
6766zred 10734 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  RR )
6867rexrd 9420 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  RR* )
69 peano2re 9529 . . . . . . . . 9  |-  ( k  e.  RR  ->  (
k  +  1 )  e.  RR )
7067, 69syl 16 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  RR )
7170rexrd 9420 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  RR* )
7267lep1d 10251 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  <_  (
k  +  1 ) )
73 ubicc2 11388 . . . . . . 7  |-  ( ( k  e.  RR*  /\  (
k  +  1 )  e.  RR*  /\  k  <_  ( k  +  1 ) )  ->  (
k  +  1 )  e.  ( k [,] ( k  +  1 ) ) )
7468, 71, 72, 73syl3anc 1211 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  ( k [,] ( k  +  1 ) ) )
75 lbicc2 11387 . . . . . . 7  |-  ( ( k  e.  RR*  /\  (
k  +  1 )  e.  RR*  /\  k  <_  ( k  +  1 ) )  ->  k  e.  ( k [,] (
k  +  1 ) ) )
7668, 71, 72, 75syl3anc 1211 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  ( k [,] ( k  +  1 ) ) )
776zred 10734 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  RR )
7877adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  M  e.  RR )
798zred 10734 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  RR )
8079adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  N  e.  RR )
81 elfzole1 11543 . . . . . . . . . . . 12  |-  ( k  e.  ( M..^ N
)  ->  M  <_  k )
8281adantl 463 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  M  <_  k
)
8328adantl 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  ( M ... N ) )
84 elfzle2 11441 . . . . . . . . . . . 12  |-  ( ( k  +  1 )  e.  ( M ... N )  ->  (
k  +  1 )  <_  N )
8583, 84syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  <_  N
)
86 iccss 11350 . . . . . . . . . . 11  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  ( M  <_ 
k  /\  ( k  +  1 )  <_  N ) )  -> 
( k [,] (
k  +  1 ) )  C_  ( M [,] N ) )
8778, 80, 82, 85, 86syl22anc 1212 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k [,] ( k  +  1 ) )  C_  ( M [,] N ) )
88 resmpt 5144 . . . . . . . . . 10  |-  ( ( k [,] ( k  +  1 ) ) 
C_  ( M [,] N )  ->  (
( x  e.  ( M [,] N ) 
|->  ( ( X  x.  x )  -  A
) )  |`  (
k [,] ( k  +  1 ) ) )  =  ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) )
8987, 88syl 16 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( x  e.  ( M [,] N )  |->  ( ( X  x.  x )  -  A ) )  |`  ( k [,] (
k  +  1 ) ) )  =  ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) )
90 eqid 2433 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
9190subcn 20283 . . . . . . . . . . . 12  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
9291a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
9390mulcn 20284 . . . . . . . . . . . . 13  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
9493a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
95 iccssre 11364 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M [,] N
)  C_  RR )
9677, 79, 95syl2anc 654 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M [,] N
)  C_  RR )
9796adantr 462 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( M [,] N )  C_  RR )
98 ax-resscn 9326 . . . . . . . . . . . . . 14  |-  RR  C_  CC
9997, 98syl6ss 3356 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( M [,] N )  C_  CC )
100 ssid 3363 . . . . . . . . . . . . . 14  |-  CC  C_  CC
101100a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  CC  C_  CC )
102 cncfmptc 20328 . . . . . . . . . . . . 13  |-  ( ( X  e.  CC  /\  ( M [,] N ) 
C_  CC  /\  CC  C_  CC )  ->  ( x  e.  ( M [,] N )  |->  X )  e.  ( ( M [,] N ) -cn-> CC ) )
1033, 99, 101, 102syl3anc 1211 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( M [,] N
)  |->  X )  e.  ( ( M [,] N ) -cn-> CC ) )
104 cncfmptid 20329 . . . . . . . . . . . . 13  |-  ( ( ( M [,] N
)  C_  CC  /\  CC  C_  CC )  ->  (
x  e.  ( M [,] N )  |->  x )  e.  ( ( M [,] N )
-cn-> CC ) )
10599, 100, 104sylancl 655 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( M [,] N
)  |->  x )  e.  ( ( M [,] N ) -cn-> CC ) )
10690, 94, 103, 105cncfmpt2f 20331 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( M [,] N
)  |->  ( X  x.  x ) )  e.  ( ( M [,] N ) -cn-> CC ) )
10714adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( M [,] N
)  |->  A )  e.  ( ( M [,] N ) -cn-> CC ) )
10890, 92, 106, 107cncfmpt2f 20331 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( M [,] N
)  |->  ( ( X  x.  x )  -  A ) )  e.  ( ( M [,] N ) -cn-> CC ) )
109 rescncf 20314 . . . . . . . . . 10  |-  ( ( k [,] ( k  +  1 ) ) 
C_  ( M [,] N )  ->  (
( x  e.  ( M [,] N ) 
|->  ( ( X  x.  x )  -  A
) )  e.  ( ( M [,] N
) -cn-> CC )  ->  (
( x  e.  ( M [,] N ) 
|->  ( ( X  x.  x )  -  A
) )  |`  (
k [,] ( k  +  1 ) ) )  e.  ( ( k [,] ( k  +  1 ) )
-cn-> CC ) ) )
11087, 108, 109sylc 60 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( x  e.  ( M [,] N )  |->  ( ( X  x.  x )  -  A ) )  |`  ( k [,] (
k  +  1 ) ) )  e.  ( ( k [,] (
k  +  1 ) ) -cn-> CC ) )
11189, 110eqeltrrd 2508 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) )  e.  ( ( k [,] ( k  +  1 ) ) -cn-> CC ) )
11298a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  RR  C_  CC )
11387, 97sstrd 3354 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k [,] ( k  +  1 ) )  C_  RR )
11487sselda 3344 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k [,] (
k  +  1 ) ) )  ->  x  e.  ( M [,] N
) )
1153adantr 462 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M [,] N
) )  ->  X  e.  CC )
11699sselda 3344 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M [,] N
) )  ->  x  e.  CC )
117115, 116mulcld 9393 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M [,] N
) )  ->  ( X  x.  x )  e.  CC )
11819r19.21bi 2804 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  A  e.  CC )
119118adantlr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M [,] N
) )  ->  A  e.  CC )
120117, 119subcld 9706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M [,] N
) )  ->  (
( X  x.  x
)  -  A )  e.  CC )
121114, 120syldan 467 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k [,] (
k  +  1 ) ) )  ->  (
( X  x.  x
)  -  A )  e.  CC )
12290tgioo2 20221 . . . . . . . . . . . 12  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
123 iccntr 20239 . . . . . . . . . . . . 13  |-  ( ( k  e.  RR  /\  ( k  +  1 )  e.  RR )  ->  ( ( int `  ( topGen `  ran  (,) )
) `  ( k [,] ( k  +  1 ) ) )  =  ( k (,) (
k  +  1 ) ) )
12467, 70, 123syl2anc 654 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( int `  ( topGen `  ran  (,) )
) `  ( k [,] ( k  +  1 ) ) )  =  ( k (,) (
k  +  1 ) ) )
125112, 113, 121, 122, 90, 124dvmptntr 21286 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  (
k [,] ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) ) )  =  ( RR  _D  (
x  e.  ( k (,) ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) )
126 reelprrecn 9361 . . . . . . . . . . . . 13  |-  RR  e.  { RR ,  CC }
127126a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  RR  e.  { RR ,  CC } )
128 ioossicc 11368 . . . . . . . . . . . . . 14  |-  ( M (,) N )  C_  ( M [,] N )
129128sseli 3340 . . . . . . . . . . . . 13  |-  ( x  e.  ( M (,) N )  ->  x  e.  ( M [,] N
) )
130129, 120sylan2 471 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  (
( X  x.  x
)  -  A )  e.  CC )
131 ovex 6105 . . . . . . . . . . . . 13  |-  ( X  -  B )  e. 
_V
132131a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  ( X  -  B )  e.  _V )
133129, 117sylan2 471 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  ( X  x.  x )  e.  CC )
1343adantr 462 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  X  e.  CC )
135128, 99syl5ss 3355 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( M (,) N )  C_  CC )
136135sselda 3344 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  x  e.  CC )
137 1cnd 9389 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  1  e.  CC )
138112sselda 3344 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  RR )  ->  x  e.  CC )
139 1cnd 9389 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  RR )  ->  1  e.  CC )
140127dvmptid 21272 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  RR  |->  x ) )  =  ( x  e.  RR  |->  1 ) )
141128, 97syl5ss 3355 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( M (,) N )  C_  RR )
142 iooretop 20186 . . . . . . . . . . . . . . . . 17  |-  ( M (,) N )  e.  ( topGen `  ran  (,) )
143142a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( M (,) N )  e.  (
topGen `  ran  (,) )
)
144127, 138, 139, 140, 141, 122, 90, 143dvmptres 21278 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  ( M (,) N )  |->  x ) )  =  ( x  e.  ( M (,) N )  |->  1 ) )
145127, 136, 137, 144, 3dvmptcmul 21279 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  ( M (,) N )  |->  ( X  x.  x ) ) )  =  ( x  e.  ( M (,) N )  |->  ( X  x.  1 ) ) )
1463mulid1d 9390 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( X  x.  1 )  =  X )
147146mpteq2dv 4367 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( x  e.  ( M (,) N
)  |->  ( X  x.  1 ) )  =  ( x  e.  ( M (,) N ) 
|->  X ) )
148145, 147eqtrd 2465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  ( M (,) N )  |->  ( X  x.  x ) ) )  =  ( x  e.  ( M (,) N )  |->  X ) )
149129, 119sylan2 471 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  A  e.  CC )
150 dvfsumabs.v . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  B  e.  V )
151150adantlr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( M (,) N
) )  ->  B  e.  V )
152 dvfsumabs.b . . . . . . . . . . . . . 14  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) )  =  ( x  e.  ( M (,) N )  |->  B ) )
153152adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  ( M (,) N )  |->  A ) )  =  ( x  e.  ( M (,) N )  |->  B ) )
154127, 133, 134, 148, 149, 151, 153dvmptsub 21282 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  ( M (,) N )  |->  ( ( X  x.  x
)  -  A ) ) )  =  ( x  e.  ( M (,) N )  |->  ( X  -  B ) ) )
15578rexrd 9420 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  M  e.  RR* )
156 iooss1 11322 . . . . . . . . . . . . . 14  |-  ( ( M  e.  RR*  /\  M  <_  k )  ->  (
k (,) ( k  +  1 ) ) 
C_  ( M (,) ( k  +  1 ) ) )
157155, 82, 156syl2anc 654 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k (,) ( k  +  1 ) )  C_  ( M (,) ( k  +  1 ) ) )
15880rexrd 9420 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  N  e.  RR* )
159 iooss2 11323 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR*  /\  (
k  +  1 )  <_  N )  -> 
( M (,) (
k  +  1 ) )  C_  ( M (,) N ) )
160158, 85, 159syl2anc 654 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( M (,) ( k  +  1 ) )  C_  ( M (,) N ) )
161157, 160sstrd 3354 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k (,) ( k  +  1 ) )  C_  ( M (,) N ) )
162 iooretop 20186 . . . . . . . . . . . . 13  |-  ( k (,) ( k  +  1 ) )  e.  ( topGen `  ran  (,) )
163162a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k (,) ( k  +  1 ) )  e.  (
topGen `  ran  (,) )
)
164127, 130, 132, 154, 161, 122, 90, 163dvmptres 21278 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  (
k (,) ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) ) )  =  ( x  e.  ( k (,) ( k  +  1 ) ) 
|->  ( X  -  B
) ) )
165125, 164eqtrd 2465 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( RR  _D  ( x  e.  (
k [,] ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) ) )  =  ( x  e.  ( k (,) ( k  +  1 ) ) 
|->  ( X  -  B
) ) )
166165dmeqd 5029 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  dom  ( RR  _D  ( x  e.  ( k [,] ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) ) )  =  dom  ( x  e.  ( k (,) (
k  +  1 ) )  |->  ( X  -  B ) ) )
167 eqid 2433 . . . . . . . . . 10  |-  ( x  e.  ( k (,) ( k  +  1 ) )  |->  ( X  -  B ) )  =  ( x  e.  ( k (,) (
k  +  1 ) )  |->  ( X  -  B ) )
168131, 167dmmpti 5528 . . . . . . . . 9  |-  dom  (
x  e.  ( k (,) ( k  +  1 ) )  |->  ( X  -  B ) )  =  ( k (,) ( k  +  1 ) )
169166, 168syl6eq 2481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  dom  ( RR  _D  ( x  e.  ( k [,] ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) ) )  =  ( k (,) (
k  +  1 ) ) )
170165adantr 462 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k (,) (
k  +  1 ) ) )  ->  ( RR  _D  ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) )  =  ( x  e.  ( k (,) (
k  +  1 ) )  |->  ( X  -  B ) ) )
171170fveq1d 5681 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k (,) (
k  +  1 ) ) )  ->  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  x
)  =  ( ( x  e.  ( k (,) ( k  +  1 ) )  |->  ( X  -  B ) ) `  x ) )
172 simpr 458 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k (,) (
k  +  1 ) ) )  ->  x  e.  ( k (,) (
k  +  1 ) ) )
173167fvmpt2 5769 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( k (,) ( k  +  1 ) )  /\  ( X  -  B
)  e.  _V )  ->  ( ( x  e.  ( k (,) (
k  +  1 ) )  |->  ( X  -  B ) ) `  x )  =  ( X  -  B ) )
174172, 131, 173sylancl 655 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k (,) (
k  +  1 ) ) )  ->  (
( x  e.  ( k (,) ( k  +  1 ) ) 
|->  ( X  -  B
) ) `  x
)  =  ( X  -  B ) )
175171, 174eqtrd 2465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k (,) (
k  +  1 ) ) )  ->  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  x
)  =  ( X  -  B ) )
176175fveq2d 5683 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k (,) (
k  +  1 ) ) )  ->  ( abs `  ( ( RR 
_D  ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) ) `
 x ) )  =  ( abs `  ( X  -  B )
) )
177 dvfsumabs.l . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  ( M..^ N )  /\  x  e.  ( k (,) ( k  +  1 ) ) ) )  ->  ( abs `  ( X  -  B ) )  <_  Y )
178177anassrs 641 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k (,) (
k  +  1 ) ) )  ->  ( abs `  ( X  -  B ) )  <_  Y )
179176, 178eqbrtrd 4300 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( k (,) (
k  +  1 ) ) )  ->  ( abs `  ( ( RR 
_D  ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) ) `
 x ) )  <_  Y )
180179ralrimiva 2789 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  A. x  e.  ( k (,) ( k  +  1 ) ) ( abs `  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  x
) )  <_  Y
)
181 nfcv 2569 . . . . . . . . . . . 12  |-  F/_ x abs
182 nfcv 2569 . . . . . . . . . . . . . 14  |-  F/_ x RR
183 nfcv 2569 . . . . . . . . . . . . . 14  |-  F/_ x  _D
184 nfmpt1 4369 . . . . . . . . . . . . . 14  |-  F/_ x
( x  e.  ( k [,] ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) )
185182, 183, 184nfov 6103 . . . . . . . . . . . . 13  |-  F/_ x
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) )
186 nfcv 2569 . . . . . . . . . . . . 13  |-  F/_ x
y
187185, 186nffv 5686 . . . . . . . . . . . 12  |-  F/_ x
( ( RR  _D  ( x  e.  (
k [,] ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) ) ) `  y )
188181, 187nffv 5686 . . . . . . . . . . 11  |-  F/_ x
( abs `  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  y
) )
189 nfcv 2569 . . . . . . . . . . 11  |-  F/_ x  <_
190 nfcv 2569 . . . . . . . . . . 11  |-  F/_ x Y
191188, 189, 190nfbr 4324 . . . . . . . . . 10  |-  F/ x
( abs `  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  y
) )  <_  Y
192 fveq2 5679 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  x
)  =  ( ( RR  _D  ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) ) `  y ) )
193192fveq2d 5683 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( abs `  ( ( RR 
_D  ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) ) `
 x ) )  =  ( abs `  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  y
) ) )
194193breq1d 4290 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( abs `  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  x
) )  <_  Y  <->  ( abs `  ( ( RR  _D  ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) ) `  y ) )  <_  Y )
)
195191, 194rspc 3056 . . . . . . . . 9  |-  ( y  e.  ( k (,) ( k  +  1 ) )  ->  ( A. x  e.  (
k (,) ( k  +  1 ) ) ( abs `  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  x
) )  <_  Y  ->  ( abs `  (
( RR  _D  (
x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) ) `  y
) )  <_  Y
) )
196180, 195mpan9 466 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  y  e.  ( k (,) (
k  +  1 ) ) )  ->  ( abs `  ( ( RR 
_D  ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) ) `
 y ) )  <_  Y )
19767, 70, 111, 169, 62, 196dvlip 21306 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( ( k  +  1 )  e.  ( k [,] ( k  +  1 ) )  /\  k  e.  ( k [,] (
k  +  1 ) ) ) )  -> 
( abs `  (
( ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `  ( k  +  1 ) )  -  (
( x  e.  ( k [,] ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) ) `  k
) ) )  <_ 
( Y  x.  ( abs `  ( ( k  +  1 )  -  k ) ) ) )
198197ex 434 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( ( k  +  1 )  e.  ( k [,] ( k  +  1 ) )  /\  k  e.  ( k [,] (
k  +  1 ) ) )  ->  ( abs `  ( ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) `  ( k  +  1 ) )  -  ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `
 k ) ) )  <_  ( Y  x.  ( abs `  (
( k  +  1 )  -  k ) ) ) ) )
19974, 76, 198mp2and 672 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( abs `  (
( ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `  ( k  +  1 ) )  -  (
( x  e.  ( k [,] ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) ) `  k
) ) )  <_ 
( Y  x.  ( abs `  ( ( k  +  1 )  -  k ) ) ) )
200 ovex 6105 . . . . . . . . 9  |-  ( ( X  x.  ( k  +  1 ) )  -  [_ ( k  +  1 )  /  x ]_ A )  e. 
_V
201 nfcv 2569 . . . . . . . . . 10  |-  F/_ x
( k  +  1 )
202 nfcv 2569 . . . . . . . . . . 11  |-  F/_ x
( X  x.  (
k  +  1 ) )
203 nfcv 2569 . . . . . . . . . . 11  |-  F/_ x  -
204 nfcsb1v 3292 . . . . . . . . . . 11  |-  F/_ x [_ ( k  +  1 )  /  x ]_ A
205202, 203, 204nfov 6103 . . . . . . . . . 10  |-  F/_ x
( ( X  x.  ( k  +  1 ) )  -  [_ ( k  +  1 )  /  x ]_ A )
206 oveq2 6088 . . . . . . . . . . 11  |-  ( x  =  ( k  +  1 )  ->  ( X  x.  x )  =  ( X  x.  ( k  +  1 ) ) )
207 csbeq1a 3285 . . . . . . . . . . 11  |-  ( x  =  ( k  +  1 )  ->  A  =  [_ ( k  +  1 )  /  x ]_ A )
208206, 207oveq12d 6098 . . . . . . . . . 10  |-  ( x  =  ( k  +  1 )  ->  (
( X  x.  x
)  -  A )  =  ( ( X  x.  ( k  +  1 ) )  -  [_ ( k  +  1 )  /  x ]_ A ) )
209 eqid 2433 . . . . . . . . . 10  |-  ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) )  =  ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) )
210201, 205, 208, 209fvmptf 5778 . . . . . . . . 9  |-  ( ( ( k  +  1 )  e.  ( k [,] ( k  +  1 ) )  /\  ( ( X  x.  ( k  +  1 ) )  -  [_ ( k  +  1 )  /  x ]_ A )  e.  _V )  ->  ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `
 ( k  +  1 ) )  =  ( ( X  x.  ( k  +  1 ) )  -  [_ ( k  +  1 )  /  x ]_ A ) )
21174, 200, 210sylancl 655 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `
 ( k  +  1 ) )  =  ( ( X  x.  ( k  +  1 ) )  -  [_ ( k  +  1 )  /  x ]_ A ) )
21267recnd 9399 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  CC )
2133, 212mulcld 9393 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( X  x.  k )  e.  CC )
214213, 37subcld 9706 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( X  x.  k )  -  [_ k  /  x ]_ A )  e.  CC )
215 nfcv 2569 . . . . . . . . . 10  |-  F/_ x
k
216 nfcv 2569 . . . . . . . . . . 11  |-  F/_ x
( X  x.  k
)
217 nfcsb1v 3292 . . . . . . . . . . 11  |-  F/_ x [_ k  /  x ]_ A
218216, 203, 217nfov 6103 . . . . . . . . . 10  |-  F/_ x
( ( X  x.  k )  -  [_ k  /  x ]_ A
)
219 oveq2 6088 . . . . . . . . . . 11  |-  ( x  =  k  ->  ( X  x.  x )  =  ( X  x.  k ) )
220 csbeq1a 3285 . . . . . . . . . . 11  |-  ( x  =  k  ->  A  =  [_ k  /  x ]_ A )
221219, 220oveq12d 6098 . . . . . . . . . 10  |-  ( x  =  k  ->  (
( X  x.  x
)  -  A )  =  ( ( X  x.  k )  -  [_ k  /  x ]_ A ) )
222215, 218, 221, 209fvmptf 5778 . . . . . . . . 9  |-  ( ( k  e.  ( k [,] ( k  +  1 ) )  /\  ( ( X  x.  k )  -  [_ k  /  x ]_ A
)  e.  CC )  ->  ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `
 k )  =  ( ( X  x.  k )  -  [_ k  /  x ]_ A
) )
22376, 214, 222syl2anc 654 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `
 k )  =  ( ( X  x.  k )  -  [_ k  /  x ]_ A
) )
224211, 223oveq12d 6098 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) `  ( k  +  1 ) )  -  ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `
 k ) )  =  ( ( ( X  x.  ( k  +  1 ) )  -  [_ ( k  +  1 )  /  x ]_ A )  -  ( ( X  x.  k )  -  [_ k  /  x ]_ A
) ) )
225 peano2cn 9528 . . . . . . . . . 10  |-  ( k  e.  CC  ->  (
k  +  1 )  e.  CC )
226212, 225syl 16 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  CC )
2273, 226mulcld 9393 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( X  x.  ( k  +  1 ) )  e.  CC )
228227, 213, 32, 37sub4d 9755 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( ( X  x.  ( k  +  1 ) )  -  ( X  x.  k ) )  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) )  =  ( ( ( X  x.  (
k  +  1 ) )  -  [_ (
k  +  1 )  /  x ]_ A
)  -  ( ( X  x.  k )  -  [_ k  /  x ]_ A ) ) )
229 1cnd 9389 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  1  e.  CC )
230212, 229pncan2d 9708 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( k  +  1 )  -  k )  =  1 )
231230oveq2d 6096 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( X  x.  ( ( k  +  1 )  -  k
) )  =  ( X  x.  1 ) )
2323, 226, 212subdid 9787 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( X  x.  ( ( k  +  1 )  -  k
) )  =  ( ( X  x.  (
k  +  1 ) )  -  ( X  x.  k ) ) )
233231, 232, 1463eqtr3d 2473 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( X  x.  ( k  +  1 ) )  -  ( X  x.  k
) )  =  X )
234233oveq1d 6095 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( ( X  x.  ( k  +  1 ) )  -  ( X  x.  k ) )  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) )  =  ( X  -  ( [_ (
k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )
235224, 228, 2343eqtr2rd 2472 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( X  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) )  =  ( ( ( x  e.  ( k [,] ( k  +  1 ) ) 
|->  ( ( X  x.  x )  -  A
) ) `  (
k  +  1 ) )  -  ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x
)  -  A ) ) `  k ) ) )
236235fveq2d 5683 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( abs `  ( X  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )  =  ( abs `  ( ( ( x  e.  ( k [,] ( k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `
 ( k  +  1 ) )  -  ( ( x  e.  ( k [,] (
k  +  1 ) )  |->  ( ( X  x.  x )  -  A ) ) `  k ) ) ) )
237230fveq2d 5683 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( abs `  (
( k  +  1 )  -  k ) )  =  ( abs `  1 ) )
238 abs1 12769 . . . . . . . 8  |-  ( abs `  1 )  =  1
239237, 238syl6eq 2481 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( abs `  (
( k  +  1 )  -  k ) )  =  1 )
240239oveq2d 6096 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( Y  x.  ( abs `  ( ( k  +  1 )  -  k ) ) )  =  ( Y  x.  1 ) )
24162recnd 9399 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  Y  e.  CC )
242241mulid1d 9390 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( Y  x.  1 )  =  Y )
243240, 242eqtr2d 2466 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  Y  =  ( Y  x.  ( abs `  ( ( k  +  1 )  -  k
) ) ) )
244199, 236, 2433brtr4d 4310 . . . 4  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( abs `  ( X  -  ( [_ ( k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )  <_  Y )
2452, 60, 62, 244fsumle 13244 . . 3  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( abs `  ( X  -  ( [_ (
k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )  <_  sum_ k  e.  ( M..^ N ) Y )
24659, 61, 63, 64, 245letrd 9515 . 2  |-  ( ph  ->  ( abs `  sum_ k  e.  ( M..^ N ) ( X  -  ( [_ (
k  +  1 )  /  x ]_ A  -  [_ k  /  x ]_ A ) ) )  <_  sum_ k  e.  ( M..^ N ) Y )
24756, 246eqbrtrrd 4302 1  |-  ( ph  ->  ( abs `  ( sum_ k  e.  ( M..^ N ) X  -  ( D  -  C
) ) )  <_  sum_ k  e.  ( M..^ N ) Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755   A.wral 2705   _Vcvv 2962   [_csb 3276    i^i cin 3315    C_ wss 3316   {cpr 3867   class class class wbr 4280    e. cmpt 4338   dom cdm 4827   ran crn 4828    |` cres 4829   -->wf 5402   ` cfv 5406  (class class class)co 6080   Fincfn 7298   CCcc 9267   RRcr 9268   1c1 9270    + caddc 9272    x. cmul 9274   RR*cxr 9404    <_ cle 9406    - cmin 9582   ZZcz 10633   ZZ>=cuz 10848   (,)cioo 11287   [,]cicc 11290   ...cfz 11423  ..^cfzo 11531   abscabs 12706   sum_csu 13146   TopOpenctopn 14342   topGenctg 14358  ℂfldccnfld 17661   intcnt 18462    Cn ccn 18669    tX ctx 18974   -cn->ccncf 20293    _D cdv 21179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346  ax-pre-sup 9347  ax-addf 9348  ax-mulf 9349
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-cda 8325  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-div 9981  df-nn 10310  df-2 10367  df-3 10368  df-4 10369  df-5 10370  df-6 10371  df-7 10372  df-8 10373  df-9 10374  df-10 10375  df-n0 10567  df-z 10634  df-dec 10743  df-uz 10849  df-q 10941  df-rp 10979  df-xneg 11076  df-xadd 11077  df-xmul 11078  df-ioo 11291  df-ico 11293  df-icc 11294  df-fz 11424  df-fzo 11532  df-seq 11790  df-exp 11849  df-hash 12087  df-cj 12571  df-re 12572  df-im 12573  df-sqr 12707  df-abs 12708  df-clim 12949  df-sum 13147  df-struct 14158  df-ndx 14159  df-slot 14160  df-base 14161  df-sets 14162  df-ress 14163  df-plusg 14233  df-mulr 14234  df-starv 14235  df-sca 14236  df-vsca 14237  df-ip 14238  df-tset 14239  df-ple 14240  df-ds 14242  df-unif 14243  df-hom 14244  df-cco 14245  df-rest 14343  df-topn 14344  df-0g 14362  df-gsum 14363  df-topgen 14364  df-pt 14365  df-prds 14368  df-xrs 14422  df-qtop 14427  df-imas 14428  df-xps 14430  df-mre 14506  df-mrc 14507  df-acs 14509  df-mnd 15397  df-submnd 15447  df-mulg 15527  df-cntz 15814  df-cmn 16258  df-psmet 17652  df-xmet 17653  df-met 17654  df-bl 17655  df-mopn 17656  df-fbas 17657  df-fg 17658  df-cnfld 17662  df-top 18344  df-bases 18346  df-topon 18347  df-topsp 18348  df-cld 18464  df-ntr 18465  df-cls 18466  df-nei 18543  df-lp 18581  df-perf 18582  df-cn 18672  df-cnp 18673  df-haus 18760  df-cmp 18831  df-tx 18976  df-hmeo 19169  df-fil 19260  df-fm 19352  df-flim 19353  df-flf 19354  df-xms 19736  df-ms 19737  df-tms 19738  df-cncf 20295  df-limc 21182  df-dv 21183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator