MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfre Structured version   Unicode version

Theorem dvfre 21267
Description: The derivative of a real function is real. (Contributed by Mario Carneiro, 1-Sep-2014.)
Assertion
Ref Expression
dvfre  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )

Proof of Theorem dvfre
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvf 21224 . . 3  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
2 ffn 5547 . . 3  |-  ( ( RR  _D  F ) : dom  ( RR 
_D  F ) --> CC 
->  ( RR  _D  F
)  Fn  dom  ( RR  _D  F ) )
31, 2mp1i 12 . 2  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( RR  _D  F
)  Fn  dom  ( RR  _D  F ) )
41ffvelrni 5830 . . . . 5  |-  ( x  e.  dom  ( RR 
_D  F )  -> 
( ( RR  _D  F ) `  x
)  e.  CC )
54adantl 463 . . . 4  |-  ( ( ( F : A --> RR  /\  A  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( RR  _D  F
) `  x )  e.  CC )
6 simpr 458 . . . . . 6  |-  ( ( ( F : A --> RR  /\  A  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  x  e.  dom  ( RR  _D  F ) )
7 fvco3 5756 . . . . . 6  |-  ( ( ( RR  _D  F
) : dom  ( RR  _D  F ) --> CC 
/\  x  e.  dom  ( RR  _D  F
) )  ->  (
( *  o.  ( RR  _D  F ) ) `
 x )  =  ( * `  (
( RR  _D  F
) `  x )
) )
81, 6, 7sylancr 656 . . . . 5  |-  ( ( ( F : A --> RR  /\  A  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( *  o.  ( RR  _D  F ) ) `
 x )  =  ( * `  (
( RR  _D  F
) `  x )
) )
9 ax-resscn 9327 . . . . . . . . . 10  |-  RR  C_  CC
10 fss 5555 . . . . . . . . . 10  |-  ( ( F : A --> RR  /\  RR  C_  CC )  ->  F : A --> CC )
119, 10mpan2 664 . . . . . . . . 9  |-  ( F : A --> RR  ->  F : A --> CC )
12 dvcj 21266 . . . . . . . . 9  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( *  o.  ( RR  _D  F ) ) )
1311, 12sylan 468 . . . . . . . 8  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( *  o.  ( RR  _D  F ) ) )
14 ffvelrn 5829 . . . . . . . . . . . . 13  |-  ( ( F : A --> RR  /\  y  e.  A )  ->  ( F `  y
)  e.  RR )
1514adantlr 707 . . . . . . . . . . . 12  |-  ( ( ( F : A --> RR  /\  A  C_  RR )  /\  y  e.  A
)  ->  ( F `  y )  e.  RR )
1615cjred 12699 . . . . . . . . . . 11  |-  ( ( ( F : A --> RR  /\  A  C_  RR )  /\  y  e.  A
)  ->  ( * `  ( F `  y
) )  =  ( F `  y ) )
1716mpteq2dva 4366 . . . . . . . . . 10  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( y  e.  A  |->  ( * `  ( F `  y )
) )  =  ( y  e.  A  |->  ( F `  y ) ) )
1815recnd 9400 . . . . . . . . . . 11  |-  ( ( ( F : A --> RR  /\  A  C_  RR )  /\  y  e.  A
)  ->  ( F `  y )  e.  CC )
19 simpl 454 . . . . . . . . . . . 12  |-  ( ( F : A --> RR  /\  A  C_  RR )  ->  F : A --> RR )
2019feqmptd 5732 . . . . . . . . . . 11  |-  ( ( F : A --> RR  /\  A  C_  RR )  ->  F  =  ( y  e.  A  |->  ( F `
 y ) ) )
21 cjf 12577 . . . . . . . . . . . . 13  |-  * : CC --> CC
2221a1i 11 . . . . . . . . . . . 12  |-  ( ( F : A --> RR  /\  A  C_  RR )  ->  * : CC --> CC )
2322feqmptd 5732 . . . . . . . . . . 11  |-  ( ( F : A --> RR  /\  A  C_  RR )  ->  *  =  ( z  e.  CC  |->  ( * `  z ) ) )
24 fveq2 5679 . . . . . . . . . . 11  |-  ( z  =  ( F `  y )  ->  (
* `  z )  =  ( * `  ( F `  y ) ) )
2518, 20, 23, 24fmptco 5863 . . . . . . . . . 10  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( *  o.  F
)  =  ( y  e.  A  |->  ( * `
 ( F `  y ) ) ) )
2617, 25, 203eqtr4d 2475 . . . . . . . . 9  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( *  o.  F
)  =  F )
2726oveq2d 6096 . . . . . . . 8  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( RR 
_D  F ) )
2813, 27eqtr3d 2467 . . . . . . 7  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( *  o.  ( RR  _D  F ) )  =  ( RR  _D  F ) )
2928fveq1d 5681 . . . . . 6  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( ( *  o.  ( RR  _D  F
) ) `  x
)  =  ( ( RR  _D  F ) `
 x ) )
3029adantr 462 . . . . 5  |-  ( ( ( F : A --> RR  /\  A  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( *  o.  ( RR  _D  F ) ) `
 x )  =  ( ( RR  _D  F ) `  x
) )
318, 30eqtr3d 2467 . . . 4  |-  ( ( ( F : A --> RR  /\  A  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
* `  ( ( RR  _D  F ) `  x ) )  =  ( ( RR  _D  F ) `  x
) )
325, 31cjrebd 12675 . . 3  |-  ( ( ( F : A --> RR  /\  A  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( RR  _D  F
) `  x )  e.  RR )
3332ralrimiva 2789 . 2  |-  ( ( F : A --> RR  /\  A  C_  RR )  ->  A. x  e.  dom  ( RR  _D  F
) ( ( RR 
_D  F ) `  x )  e.  RR )
34 ffnfv 5856 . 2  |-  ( ( RR  _D  F ) : dom  ( RR 
_D  F ) --> RR  <->  ( ( RR  _D  F
)  Fn  dom  ( RR  _D  F )  /\  A. x  e.  dom  ( RR  _D  F ) ( ( RR  _D  F
) `  x )  e.  RR ) )
353, 33, 34sylanbrc 657 1  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755   A.wral 2705    C_ wss 3316    e. cmpt 4338   dom cdm 4827    o. ccom 4831    Fn wfn 5401   -->wf 5402   ` cfv 5406  (class class class)co 6080   CCcc 9268   RRcr 9269   *ccj 12569    _D cdv 21180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fi 7649  df-sup 7679  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-q 10942  df-rp 10980  df-xneg 11077  df-xadd 11078  df-xmul 11079  df-ioo 11292  df-icc 11295  df-fz 11425  df-seq 11791  df-exp 11850  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-plusg 14234  df-mulr 14235  df-starv 14236  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-rest 14344  df-topn 14345  df-topgen 14365  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656  df-mopn 17657  df-fbas 17658  df-fg 17659  df-cnfld 17663  df-top 18345  df-bases 18347  df-topon 18348  df-topsp 18349  df-cld 18465  df-ntr 18466  df-cls 18467  df-nei 18544  df-lp 18582  df-perf 18583  df-cn 18673  df-cnp 18674  df-haus 18761  df-fil 19261  df-fm 19353  df-flim 19354  df-flf 19355  df-xms 19737  df-ms 19738  df-cncf 20296  df-limc 21183  df-dv 21184
This theorem is referenced by:  dvnfre  21268  dvferm1lem  21298  dvferm1  21299  dvferm2lem  21300  dvferm2  21301  dvferm  21302  c1lip2  21312  dvle  21321  dvivthlem1  21322  dvivth  21324  dvne0  21325  dvfsumle  21335  dvfsumge  21336  dvmptrecl  21338
  Copyright terms: Public domain W3C validator