MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm2lem Structured version   Unicode version

Theorem dvferm2lem 22122
Description: Lemma for dvferm 22124. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvferm.a  |-  ( ph  ->  F : X --> RR )
dvferm.b  |-  ( ph  ->  X  C_  RR )
dvferm.u  |-  ( ph  ->  U  e.  ( A (,) B ) )
dvferm.s  |-  ( ph  ->  ( A (,) B
)  C_  X )
dvferm.d  |-  ( ph  ->  U  e.  dom  ( RR  _D  F ) )
dvferm2.r  |-  ( ph  ->  A. y  e.  ( A (,) U ) ( F `  y
)  <_  ( F `  U ) )
dvferm2.z  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  <  0 )
dvferm2.t  |-  ( ph  ->  T  e.  RR+ )
dvferm2.l  |-  ( ph  ->  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  T )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )
dvferm2.x  |-  S  =  ( ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  +  U )  /  2
)
Assertion
Ref Expression
dvferm2lem  |-  -.  ph
Distinct variable groups:    y, z, A    y, B, z    y, F, z    y, U, z   
y, X, z    ph, y    y, S, z    z, T
Allowed substitution hints:    ph( z)    T( y)

Proof of Theorem dvferm2lem
StepHypRef Expression
1 dvferm.u . . . . . . . . . . . . . . . 16  |-  ( ph  ->  U  e.  ( A (,) B ) )
2 ne0i 3791 . . . . . . . . . . . . . . . 16  |-  ( U  e.  ( A (,) B )  ->  ( A (,) B )  =/=  (/) )
3 ndmioo 11552 . . . . . . . . . . . . . . . . 17  |-  ( -.  ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B
)  =  (/) )
43necon1ai 2698 . . . . . . . . . . . . . . . 16  |-  ( ( A (,) B )  =/=  (/)  ->  ( A  e.  RR*  /\  B  e. 
RR* ) )
51, 2, 43syl 20 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  e.  RR*  /\  B  e.  RR* )
)
65simprd 463 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  RR* )
7 eliooord 11580 . . . . . . . . . . . . . . . . 17  |-  ( U  e.  ( A (,) B )  ->  ( A  <  U  /\  U  <  B ) )
81, 7syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( A  <  U  /\  U  <  B ) )
98simprd 463 . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  <  B )
10 ioossre 11582 . . . . . . . . . . . . . . . . . 18  |-  ( A (,) B )  C_  RR
1110, 1sseldi 3502 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  U  e.  RR )
1211rexrd 9639 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  U  e.  RR* )
13 xrltle 11351 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  RR*  /\  B  e.  RR* )  ->  ( U  <  B  ->  U  <_  B ) )
1412, 6, 13syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( U  <  B  ->  U  <_  B )
)
159, 14mpd 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  U  <_  B )
16 iooss2 11561 . . . . . . . . . . . . . 14  |-  ( ( B  e.  RR*  /\  U  <_  B )  ->  ( A (,) U )  C_  ( A (,) B ) )
176, 15, 16syl2anc 661 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A (,) U
)  C_  ( A (,) B ) )
18 dvferm.s . . . . . . . . . . . . 13  |-  ( ph  ->  ( A (,) B
)  C_  X )
1917, 18sstrd 3514 . . . . . . . . . . . 12  |-  ( ph  ->  ( A (,) U
)  C_  X )
20 dvferm2.x . . . . . . . . . . . . . 14  |-  S  =  ( ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  +  U )  /  2
)
21 mnfxr 11319 . . . . . . . . . . . . . . . . . 18  |- -oo  e.  RR*
2221a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  -> -oo  e.  RR* )
23 dvferm2.t . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  T  e.  RR+ )
2423rpred 11252 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  T  e.  RR )
2511, 24resubcld 9983 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( U  -  T
)  e.  RR )
2625rexrd 9639 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( U  -  T
)  e.  RR* )
275simpld 459 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  e.  RR* )
28 ifcl 3981 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( U  -  T
)  e.  RR*  /\  A  e.  RR* )  ->  if ( A  <_  ( U  -  T ) ,  ( U  -  T
) ,  A )  e.  RR* )
2926, 27, 28syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  e.  RR* )
30 mnflt 11329 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  -  T )  e.  RR  -> -oo  <  ( U  -  T ) )
3125, 30syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  -> -oo  <  ( U  -  T ) )
32 xrmax2 11373 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  RR*  /\  ( U  -  T )  e.  RR* )  ->  ( U  -  T )  <_  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A ) )
3327, 26, 32syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( U  -  T
)  <_  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A ) )
3422, 26, 29, 31, 33xrltletrd 11360 . . . . . . . . . . . . . . . . 17  |-  ( ph  -> -oo  <  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A ) )
3511, 23ltsubrpd 11280 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( U  -  T
)  <  U )
368simpld 459 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  <  U )
37 breq1 4450 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  -  T )  =  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  -> 
( ( U  -  T )  <  U  <->  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A
)  <  U )
)
38 breq1 4450 . . . . . . . . . . . . . . . . . . 19  |-  ( A  =  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  -> 
( A  <  U  <->  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A
)  <  U )
)
3937, 38ifboth 3975 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( U  -  T
)  <  U  /\  A  <  U )  ->  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A
)  <  U )
4035, 36, 39syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  <  U
)
41 xrre2 11367 . . . . . . . . . . . . . . . . 17  |-  ( ( ( -oo  e.  RR*  /\  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  e.  RR*  /\  U  e.  RR* )  /\  ( -oo  <  if ( A  <_  ( U  -  T ) ,  ( U  -  T
) ,  A )  /\  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  < 
U ) )  ->  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A
)  e.  RR )
4222, 29, 12, 34, 40, 41syl32anc 1236 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  e.  RR )
4342, 11readdcld 9619 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  +  U )  e.  RR )
4443rehalfcld 10781 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  +  U )  /  2
)  e.  RR )
4520, 44syl5eqel 2559 . . . . . . . . . . . . 13  |-  ( ph  ->  S  e.  RR )
4645rexrd 9639 . . . . . . . . . . . . . 14  |-  ( ph  ->  S  e.  RR* )
47 xrmax1 11372 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR*  /\  ( U  -  T )  e.  RR* )  ->  A  <_  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A ) )
4827, 26, 47syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  <_  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A ) )
49 avglt1 10772 . . . . . . . . . . . . . . . . 17  |-  ( ( if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  e.  RR  /\  U  e.  RR )  ->  ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  < 
U  <->  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  <  (
( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  +  U )  /  2
) ) )
5042, 11, 49syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  < 
U  <->  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  <  (
( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  +  U )  /  2
) ) )
5140, 50mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ph  ->  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  <  (
( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  +  U )  /  2
) )
5251, 20syl6breqr 4487 . . . . . . . . . . . . . 14  |-  ( ph  ->  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  <  S
)
5327, 29, 46, 48, 52xrlelttrd 11359 . . . . . . . . . . . . 13  |-  ( ph  ->  A  <  S )
54 avglt2 10773 . . . . . . . . . . . . . . . 16  |-  ( ( if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  e.  RR  /\  U  e.  RR )  ->  ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  < 
U  <->  ( ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A
)  +  U )  /  2 )  < 
U ) )
5542, 11, 54syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  < 
U  <->  ( ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A
)  +  U )  /  2 )  < 
U ) )
5640, 55mpbid 210 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  +  U )  /  2
)  <  U )
5720, 56syl5eqbr 4480 . . . . . . . . . . . . 13  |-  ( ph  ->  S  <  U )
58 elioo2 11566 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR*  /\  U  e.  RR* )  ->  ( S  e.  ( A (,) U )  <->  ( S  e.  RR  /\  A  < 
S  /\  S  <  U ) ) )
5927, 12, 58syl2anc 661 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S  e.  ( A (,) U )  <-> 
( S  e.  RR  /\  A  <  S  /\  S  <  U ) ) )
6045, 53, 57, 59mpbir3and 1179 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  ( A (,) U ) )
6119, 60sseldd 3505 . . . . . . . . . . 11  |-  ( ph  ->  S  e.  X )
6245, 57ltned 9716 . . . . . . . . . . 11  |-  ( ph  ->  S  =/=  U )
63 eldifsn 4152 . . . . . . . . . . 11  |-  ( S  e.  ( X  \  { U } )  <->  ( S  e.  X  /\  S  =/= 
U ) )
6461, 62, 63sylanbrc 664 . . . . . . . . . 10  |-  ( ph  ->  S  e.  ( X 
\  { U }
) )
65 dvferm2.l . . . . . . . . . 10  |-  ( ph  ->  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  T )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )
6645, 11, 57ltled 9728 . . . . . . . . . . . . 13  |-  ( ph  ->  S  <_  U )
6745, 11, 66abssuble0d 13223 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( S  -  U )
)  =  ( U  -  S ) )
6825, 42, 45, 33, 52lelttrd 9735 . . . . . . . . . . . . 13  |-  ( ph  ->  ( U  -  T
)  <  S )
6911, 24, 45, 68ltsub23d 10153 . . . . . . . . . . . 12  |-  ( ph  ->  ( U  -  S
)  <  T )
7067, 69eqbrtrd 4467 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  ( S  -  U )
)  <  T )
7162, 70jca 532 . . . . . . . . . 10  |-  ( ph  ->  ( S  =/=  U  /\  ( abs `  ( S  -  U )
)  <  T )
)
72 neeq1 2748 . . . . . . . . . . . . 13  |-  ( z  =  S  ->  (
z  =/=  U  <->  S  =/=  U ) )
73 oveq1 6289 . . . . . . . . . . . . . . 15  |-  ( z  =  S  ->  (
z  -  U )  =  ( S  -  U ) )
7473fveq2d 5868 . . . . . . . . . . . . . 14  |-  ( z  =  S  ->  ( abs `  ( z  -  U ) )  =  ( abs `  ( S  -  U )
) )
7574breq1d 4457 . . . . . . . . . . . . 13  |-  ( z  =  S  ->  (
( abs `  (
z  -  U ) )  <  T  <->  ( abs `  ( S  -  U
) )  <  T
) )
7672, 75anbi12d 710 . . . . . . . . . . . 12  |-  ( z  =  S  ->  (
( z  =/=  U  /\  ( abs `  (
z  -  U ) )  <  T )  <-> 
( S  =/=  U  /\  ( abs `  ( S  -  U )
)  <  T )
) )
77 fveq2 5864 . . . . . . . . . . . . . . . . 17  |-  ( z  =  S  ->  ( F `  z )  =  ( F `  S ) )
7877oveq1d 6297 . . . . . . . . . . . . . . . 16  |-  ( z  =  S  ->  (
( F `  z
)  -  ( F `
 U ) )  =  ( ( F `
 S )  -  ( F `  U ) ) )
7978, 73oveq12d 6300 . . . . . . . . . . . . . . 15  |-  ( z  =  S  ->  (
( ( F `  z )  -  ( F `  U )
)  /  ( z  -  U ) )  =  ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) ) )
8079oveq1d 6297 . . . . . . . . . . . . . 14  |-  ( z  =  S  ->  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) )  =  ( ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) )  -  (
( RR  _D  F
) `  U )
) )
8180fveq2d 5868 . . . . . . . . . . . . 13  |-  ( z  =  S  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  =  ( abs `  (
( ( ( F `
 S )  -  ( F `  U ) )  /  ( S  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) ) )
8281breq1d 4457 . . . . . . . . . . . 12  |-  ( z  =  S  ->  (
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U )  <->  ( abs `  ( ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) )  -  (
( RR  _D  F
) `  U )
) )  <  -u (
( RR  _D  F
) `  U )
) )
8376, 82imbi12d 320 . . . . . . . . . . 11  |-  ( z  =  S  ->  (
( ( z  =/= 
U  /\  ( abs `  ( z  -  U
) )  <  T
)  ->  ( abs `  ( ( ( ( F `  z )  -  ( F `  U ) )  / 
( z  -  U
) )  -  (
( RR  _D  F
) `  U )
) )  <  -u (
( RR  _D  F
) `  U )
)  <->  ( ( S  =/=  U  /\  ( abs `  ( S  -  U ) )  < 
T )  ->  ( abs `  ( ( ( ( F `  S
)  -  ( F `
 U ) )  /  ( S  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  <  -u ( ( RR  _D  F ) `  U
) ) ) )
8483rspcv 3210 . . . . . . . . . 10  |-  ( S  e.  ( X  \  { U } )  -> 
( A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  T )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) )  -> 
( ( S  =/= 
U  /\  ( abs `  ( S  -  U
) )  <  T
)  ->  ( abs `  ( ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) )  -  (
( RR  _D  F
) `  U )
) )  <  -u (
( RR  _D  F
) `  U )
) ) )
8564, 65, 71, 84syl3c 61 . . . . . . . . 9  |-  ( ph  ->  ( abs `  (
( ( ( F `
 S )  -  ( F `  U ) )  /  ( S  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) )
86 dvferm.a . . . . . . . . . . . . 13  |-  ( ph  ->  F : X --> RR )
8786, 61ffvelrnd 6020 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  S
)  e.  RR )
8818, 1sseldd 3505 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  X )
8986, 88ffvelrnd 6020 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  U
)  e.  RR )
9087, 89resubcld 9983 . . . . . . . . . . 11  |-  ( ph  ->  ( ( F `  S )  -  ( F `  U )
)  e.  RR )
9145, 11resubcld 9983 . . . . . . . . . . 11  |-  ( ph  ->  ( S  -  U
)  e.  RR )
9245recnd 9618 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  CC )
9311recnd 9618 . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  CC )
9492, 93, 62subne0d 9935 . . . . . . . . . . 11  |-  ( ph  ->  ( S  -  U
)  =/=  0 )
9590, 91, 94redivcld 10368 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 S )  -  ( F `  U ) )  /  ( S  -  U ) )  e.  RR )
96 dvferm.b . . . . . . . . . . . 12  |-  ( ph  ->  X  C_  RR )
97 dvfre 22089 . . . . . . . . . . . 12  |-  ( ( F : X --> RR  /\  X  C_  RR )  -> 
( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
9886, 96, 97syl2anc 661 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
99 dvferm.d . . . . . . . . . . 11  |-  ( ph  ->  U  e.  dom  ( RR  _D  F ) )
10098, 99ffvelrnd 6020 . . . . . . . . . 10  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  e.  RR )
101100renegcld 9982 . . . . . . . . . 10  |-  ( ph  -> 
-u ( ( RR 
_D  F ) `  U )  e.  RR )
10295, 100, 101absdifltd 13224 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  (
( ( ( F `
 S )  -  ( F `  U ) )  /  ( S  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U )  <->  ( (
( ( RR  _D  F ) `  U
)  -  -u (
( RR  _D  F
) `  U )
)  <  ( (
( F `  S
)  -  ( F `
 U ) )  /  ( S  -  U ) )  /\  ( ( ( F `
 S )  -  ( F `  U ) )  /  ( S  -  U ) )  <  ( ( ( RR  _D  F ) `
 U )  + 
-u ( ( RR 
_D  F ) `  U ) ) ) ) )
10385, 102mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( RR  _D  F ) `
 U )  -  -u ( ( RR  _D  F ) `  U
) )  <  (
( ( F `  S )  -  ( F `  U )
)  /  ( S  -  U ) )  /\  ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) )  <  (
( ( RR  _D  F ) `  U
)  +  -u (
( RR  _D  F
) `  U )
) ) )
104103simprd 463 . . . . . . 7  |-  ( ph  ->  ( ( ( F `
 S )  -  ( F `  U ) )  /  ( S  -  U ) )  <  ( ( ( RR  _D  F ) `
 U )  + 
-u ( ( RR 
_D  F ) `  U ) ) )
105100recnd 9618 . . . . . . . 8  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  e.  CC )
106105negidd 9916 . . . . . . 7  |-  ( ph  ->  ( ( ( RR 
_D  F ) `  U )  +  -u ( ( RR  _D  F ) `  U
) )  =  0 )
107104, 106breqtrd 4471 . . . . . 6  |-  ( ph  ->  ( ( ( F `
 S )  -  ( F `  U ) )  /  ( S  -  U ) )  <  0 )
10895lt0neg1d 10118 . . . . . 6  |-  ( ph  ->  ( ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) )  <  0  <->  0  <  -u ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) ) ) )
109107, 108mpbid 210 . . . . 5  |-  ( ph  ->  0  <  -u (
( ( F `  S )  -  ( F `  U )
)  /  ( S  -  U ) ) )
11090recnd 9618 . . . . . 6  |-  ( ph  ->  ( ( F `  S )  -  ( F `  U )
)  e.  CC )
11191recnd 9618 . . . . . 6  |-  ( ph  ->  ( S  -  U
)  e.  CC )
112110, 111, 94divneg2d 10330 . . . . 5  |-  ( ph  -> 
-u ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) )  =  ( ( ( F `  S )  -  ( F `  U )
)  /  -u ( S  -  U )
) )
113109, 112breqtrd 4471 . . . 4  |-  ( ph  ->  0  <  ( ( ( F `  S
)  -  ( F `
 U ) )  /  -u ( S  -  U ) ) )
11491renegcld 9982 . . . . 5  |-  ( ph  -> 
-u ( S  -  U )  e.  RR )
11545, 11posdifd 10135 . . . . . . 7  |-  ( ph  ->  ( S  <  U  <->  0  <  ( U  -  S ) ) )
11657, 115mpbid 210 . . . . . 6  |-  ( ph  ->  0  <  ( U  -  S ) )
11792, 93negsubdi2d 9942 . . . . . 6  |-  ( ph  -> 
-u ( S  -  U )  =  ( U  -  S ) )
118116, 117breqtrrd 4473 . . . . 5  |-  ( ph  ->  0  <  -u ( S  -  U )
)
119 gt0div 10404 . . . . 5  |-  ( ( ( ( F `  S )  -  ( F `  U )
)  e.  RR  /\  -u ( S  -  U
)  e.  RR  /\  0  <  -u ( S  -  U ) )  -> 
( 0  <  (
( F `  S
)  -  ( F `
 U ) )  <->  0  <  ( ( ( F `  S
)  -  ( F `
 U ) )  /  -u ( S  -  U ) ) ) )
12090, 114, 118, 119syl3anc 1228 . . . 4  |-  ( ph  ->  ( 0  <  (
( F `  S
)  -  ( F `
 U ) )  <->  0  <  ( ( ( F `  S
)  -  ( F `
 U ) )  /  -u ( S  -  U ) ) ) )
121113, 120mpbird 232 . . 3  |-  ( ph  ->  0  <  ( ( F `  S )  -  ( F `  U ) ) )
12289, 87posdifd 10135 . . 3  |-  ( ph  ->  ( ( F `  U )  <  ( F `  S )  <->  0  <  ( ( F `
 S )  -  ( F `  U ) ) ) )
123121, 122mpbird 232 . 2  |-  ( ph  ->  ( F `  U
)  <  ( F `  S ) )
124 dvferm2.r . . . 4  |-  ( ph  ->  A. y  e.  ( A (,) U ) ( F `  y
)  <_  ( F `  U ) )
125 fveq2 5864 . . . . . 6  |-  ( y  =  S  ->  ( F `  y )  =  ( F `  S ) )
126125breq1d 4457 . . . . 5  |-  ( y  =  S  ->  (
( F `  y
)  <_  ( F `  U )  <->  ( F `  S )  <_  ( F `  U )
) )
127126rspcv 3210 . . . 4  |-  ( S  e.  ( A (,) U )  ->  ( A. y  e.  ( A (,) U ) ( F `  y )  <_  ( F `  U )  ->  ( F `  S )  <_  ( F `  U
) ) )
12860, 124, 127sylc 60 . . 3  |-  ( ph  ->  ( F `  S
)  <_  ( F `  U ) )
12987, 89lenltd 9726 . . 3  |-  ( ph  ->  ( ( F `  S )  <_  ( F `  U )  <->  -.  ( F `  U
)  <  ( F `  S ) ) )
130128, 129mpbid 210 . 2  |-  ( ph  ->  -.  ( F `  U )  <  ( F `  S )
)
131123, 130pm2.65i 173 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814    \ cdif 3473    C_ wss 3476   (/)c0 3785   ifcif 3939   {csn 4027   class class class wbr 4447   dom cdm 4999   -->wf 5582   ` cfv 5586  (class class class)co 6282   RRcr 9487   0cc0 9488    + caddc 9491   -oocmnf 9622   RR*cxr 9623    < clt 9624    <_ cle 9625    - cmin 9801   -ucneg 9802    / cdiv 10202   2c2 10581   RR+crp 11216   (,)cioo 11525   abscabs 13026    _D cdv 22002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fi 7867  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-icc 11532  df-fz 11669  df-seq 12072  df-exp 12131  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-plusg 14564  df-mulr 14565  df-starv 14566  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-rest 14674  df-topn 14675  df-topgen 14695  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-fbas 18187  df-fg 18188  df-cnfld 18192  df-top 19166  df-bases 19168  df-topon 19169  df-topsp 19170  df-cld 19286  df-ntr 19287  df-cls 19288  df-nei 19365  df-lp 19403  df-perf 19404  df-cn 19494  df-cnp 19495  df-haus 19582  df-fil 20082  df-fm 20174  df-flim 20175  df-flf 20176  df-xms 20558  df-ms 20559  df-cncf 21117  df-limc 22005  df-dv 22006
This theorem is referenced by:  dvferm2  22123
  Copyright terms: Public domain W3C validator