MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm2lem Structured version   Unicode version

Theorem dvferm2lem 21417
Description: Lemma for dvferm 21419. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvferm.a  |-  ( ph  ->  F : X --> RR )
dvferm.b  |-  ( ph  ->  X  C_  RR )
dvferm.u  |-  ( ph  ->  U  e.  ( A (,) B ) )
dvferm.s  |-  ( ph  ->  ( A (,) B
)  C_  X )
dvferm.d  |-  ( ph  ->  U  e.  dom  ( RR  _D  F ) )
dvferm2.r  |-  ( ph  ->  A. y  e.  ( A (,) U ) ( F `  y
)  <_  ( F `  U ) )
dvferm2.z  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  <  0 )
dvferm2.t  |-  ( ph  ->  T  e.  RR+ )
dvferm2.l  |-  ( ph  ->  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  T )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )
dvferm2.x  |-  S  =  ( ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  +  U )  /  2
)
Assertion
Ref Expression
dvferm2lem  |-  -.  ph
Distinct variable groups:    y, z, A    y, B, z    y, F, z    y, U, z   
y, X, z    ph, y    y, S, z    z, T
Allowed substitution hints:    ph( z)    T( y)

Proof of Theorem dvferm2lem
StepHypRef Expression
1 dvferm.u . . . . . . . . . . . . . . . 16  |-  ( ph  ->  U  e.  ( A (,) B ) )
2 ne0i 3640 . . . . . . . . . . . . . . . 16  |-  ( U  e.  ( A (,) B )  ->  ( A (,) B )  =/=  (/) )
3 ndmioo 11323 . . . . . . . . . . . . . . . . 17  |-  ( -.  ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B
)  =  (/) )
43necon1ai 2651 . . . . . . . . . . . . . . . 16  |-  ( ( A (,) B )  =/=  (/)  ->  ( A  e.  RR*  /\  B  e. 
RR* ) )
51, 2, 43syl 20 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  e.  RR*  /\  B  e.  RR* )
)
65simprd 460 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  RR* )
7 eliooord 11351 . . . . . . . . . . . . . . . . 17  |-  ( U  e.  ( A (,) B )  ->  ( A  <  U  /\  U  <  B ) )
81, 7syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( A  <  U  /\  U  <  B ) )
98simprd 460 . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  <  B )
10 ioossre 11353 . . . . . . . . . . . . . . . . . 18  |-  ( A (,) B )  C_  RR
1110, 1sseldi 3351 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  U  e.  RR )
1211rexrd 9429 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  U  e.  RR* )
13 xrltle 11122 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  RR*  /\  B  e.  RR* )  ->  ( U  <  B  ->  U  <_  B ) )
1412, 6, 13syl2anc 656 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( U  <  B  ->  U  <_  B )
)
159, 14mpd 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  U  <_  B )
16 iooss2 11332 . . . . . . . . . . . . . 14  |-  ( ( B  e.  RR*  /\  U  <_  B )  ->  ( A (,) U )  C_  ( A (,) B ) )
176, 15, 16syl2anc 656 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A (,) U
)  C_  ( A (,) B ) )
18 dvferm.s . . . . . . . . . . . . 13  |-  ( ph  ->  ( A (,) B
)  C_  X )
1917, 18sstrd 3363 . . . . . . . . . . . 12  |-  ( ph  ->  ( A (,) U
)  C_  X )
20 dvferm2.x . . . . . . . . . . . . . 14  |-  S  =  ( ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  +  U )  /  2
)
21 mnfxr 11090 . . . . . . . . . . . . . . . . . 18  |- -oo  e.  RR*
2221a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  -> -oo  e.  RR* )
23 dvferm2.t . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  T  e.  RR+ )
2423rpred 11023 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  T  e.  RR )
2511, 24resubcld 9772 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( U  -  T
)  e.  RR )
2625rexrd 9429 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( U  -  T
)  e.  RR* )
275simpld 456 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  e.  RR* )
28 ifcl 3828 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( U  -  T
)  e.  RR*  /\  A  e.  RR* )  ->  if ( A  <_  ( U  -  T ) ,  ( U  -  T
) ,  A )  e.  RR* )
2926, 27, 28syl2anc 656 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  e.  RR* )
30 mnflt 11100 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  -  T )  e.  RR  -> -oo  <  ( U  -  T ) )
3125, 30syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  -> -oo  <  ( U  -  T ) )
32 xrmax2 11144 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  RR*  /\  ( U  -  T )  e.  RR* )  ->  ( U  -  T )  <_  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A ) )
3327, 26, 32syl2anc 656 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( U  -  T
)  <_  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A ) )
3422, 26, 29, 31, 33xrltletrd 11131 . . . . . . . . . . . . . . . . 17  |-  ( ph  -> -oo  <  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A ) )
3511, 23ltsubrpd 11051 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( U  -  T
)  <  U )
368simpld 456 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  <  U )
37 breq1 4292 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  -  T )  =  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  -> 
( ( U  -  T )  <  U  <->  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A
)  <  U )
)
38 breq1 4292 . . . . . . . . . . . . . . . . . . 19  |-  ( A  =  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  -> 
( A  <  U  <->  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A
)  <  U )
)
3937, 38ifboth 3822 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( U  -  T
)  <  U  /\  A  <  U )  ->  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A
)  <  U )
4035, 36, 39syl2anc 656 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  <  U
)
41 xrre2 11138 . . . . . . . . . . . . . . . . 17  |-  ( ( ( -oo  e.  RR*  /\  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  e.  RR*  /\  U  e.  RR* )  /\  ( -oo  <  if ( A  <_  ( U  -  T ) ,  ( U  -  T
) ,  A )  /\  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  < 
U ) )  ->  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A
)  e.  RR )
4222, 29, 12, 34, 40, 41syl32anc 1221 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  e.  RR )
4342, 11readdcld 9409 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  +  U )  e.  RR )
4443rehalfcld 10567 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  +  U )  /  2
)  e.  RR )
4520, 44syl5eqel 2525 . . . . . . . . . . . . 13  |-  ( ph  ->  S  e.  RR )
4645rexrd 9429 . . . . . . . . . . . . . 14  |-  ( ph  ->  S  e.  RR* )
47 xrmax1 11143 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR*  /\  ( U  -  T )  e.  RR* )  ->  A  <_  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A ) )
4827, 26, 47syl2anc 656 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  <_  if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A ) )
49 avglt1 10558 . . . . . . . . . . . . . . . . 17  |-  ( ( if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  e.  RR  /\  U  e.  RR )  ->  ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  < 
U  <->  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  <  (
( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  +  U )  /  2
) ) )
5042, 11, 49syl2anc 656 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  < 
U  <->  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  <  (
( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  +  U )  /  2
) ) )
5140, 50mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ph  ->  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  <  (
( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  +  U )  /  2
) )
5251, 20syl6breqr 4329 . . . . . . . . . . . . . 14  |-  ( ph  ->  if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  <  S
)
5327, 29, 46, 48, 52xrlelttrd 11130 . . . . . . . . . . . . 13  |-  ( ph  ->  A  <  S )
54 avglt2 10559 . . . . . . . . . . . . . . . 16  |-  ( ( if ( A  <_ 
( U  -  T
) ,  ( U  -  T ) ,  A )  e.  RR  /\  U  e.  RR )  ->  ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  < 
U  <->  ( ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A
)  +  U )  /  2 )  < 
U ) )
5542, 11, 54syl2anc 656 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  < 
U  <->  ( ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A
)  +  U )  /  2 )  < 
U ) )
5640, 55mpbid 210 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( if ( A  <_  ( U  -  T ) ,  ( U  -  T ) ,  A )  +  U )  /  2
)  <  U )
5720, 56syl5eqbr 4322 . . . . . . . . . . . . 13  |-  ( ph  ->  S  <  U )
58 elioo2 11337 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR*  /\  U  e.  RR* )  ->  ( S  e.  ( A (,) U )  <->  ( S  e.  RR  /\  A  < 
S  /\  S  <  U ) ) )
5927, 12, 58syl2anc 656 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S  e.  ( A (,) U )  <-> 
( S  e.  RR  /\  A  <  S  /\  S  <  U ) ) )
6045, 53, 57, 59mpbir3and 1166 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  ( A (,) U ) )
6119, 60sseldd 3354 . . . . . . . . . . 11  |-  ( ph  ->  S  e.  X )
6245, 57ltned 9506 . . . . . . . . . . 11  |-  ( ph  ->  S  =/=  U )
63 eldifsn 3997 . . . . . . . . . . 11  |-  ( S  e.  ( X  \  { U } )  <->  ( S  e.  X  /\  S  =/= 
U ) )
6461, 62, 63sylanbrc 659 . . . . . . . . . 10  |-  ( ph  ->  S  e.  ( X 
\  { U }
) )
65 dvferm2.l . . . . . . . . . 10  |-  ( ph  ->  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  T )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )
6645, 11, 57ltled 9518 . . . . . . . . . . . . 13  |-  ( ph  ->  S  <_  U )
6745, 11, 66abssuble0d 12915 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( S  -  U )
)  =  ( U  -  S ) )
6825, 42, 45, 33, 52lelttrd 9525 . . . . . . . . . . . . 13  |-  ( ph  ->  ( U  -  T
)  <  S )
6911, 24, 45, 68ltsub23d 9940 . . . . . . . . . . . 12  |-  ( ph  ->  ( U  -  S
)  <  T )
7067, 69eqbrtrd 4309 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  ( S  -  U )
)  <  T )
7162, 70jca 529 . . . . . . . . . 10  |-  ( ph  ->  ( S  =/=  U  /\  ( abs `  ( S  -  U )
)  <  T )
)
72 neeq1 2614 . . . . . . . . . . . . 13  |-  ( z  =  S  ->  (
z  =/=  U  <->  S  =/=  U ) )
73 oveq1 6097 . . . . . . . . . . . . . . 15  |-  ( z  =  S  ->  (
z  -  U )  =  ( S  -  U ) )
7473fveq2d 5692 . . . . . . . . . . . . . 14  |-  ( z  =  S  ->  ( abs `  ( z  -  U ) )  =  ( abs `  ( S  -  U )
) )
7574breq1d 4299 . . . . . . . . . . . . 13  |-  ( z  =  S  ->  (
( abs `  (
z  -  U ) )  <  T  <->  ( abs `  ( S  -  U
) )  <  T
) )
7672, 75anbi12d 705 . . . . . . . . . . . 12  |-  ( z  =  S  ->  (
( z  =/=  U  /\  ( abs `  (
z  -  U ) )  <  T )  <-> 
( S  =/=  U  /\  ( abs `  ( S  -  U )
)  <  T )
) )
77 fveq2 5688 . . . . . . . . . . . . . . . . 17  |-  ( z  =  S  ->  ( F `  z )  =  ( F `  S ) )
7877oveq1d 6105 . . . . . . . . . . . . . . . 16  |-  ( z  =  S  ->  (
( F `  z
)  -  ( F `
 U ) )  =  ( ( F `
 S )  -  ( F `  U ) ) )
7978, 73oveq12d 6108 . . . . . . . . . . . . . . 15  |-  ( z  =  S  ->  (
( ( F `  z )  -  ( F `  U )
)  /  ( z  -  U ) )  =  ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) ) )
8079oveq1d 6105 . . . . . . . . . . . . . 14  |-  ( z  =  S  ->  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) )  =  ( ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) )  -  (
( RR  _D  F
) `  U )
) )
8180fveq2d 5692 . . . . . . . . . . . . 13  |-  ( z  =  S  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  =  ( abs `  (
( ( ( F `
 S )  -  ( F `  U ) )  /  ( S  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) ) )
8281breq1d 4299 . . . . . . . . . . . 12  |-  ( z  =  S  ->  (
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U )  <->  ( abs `  ( ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) )  -  (
( RR  _D  F
) `  U )
) )  <  -u (
( RR  _D  F
) `  U )
) )
8376, 82imbi12d 320 . . . . . . . . . . 11  |-  ( z  =  S  ->  (
( ( z  =/= 
U  /\  ( abs `  ( z  -  U
) )  <  T
)  ->  ( abs `  ( ( ( ( F `  z )  -  ( F `  U ) )  / 
( z  -  U
) )  -  (
( RR  _D  F
) `  U )
) )  <  -u (
( RR  _D  F
) `  U )
)  <->  ( ( S  =/=  U  /\  ( abs `  ( S  -  U ) )  < 
T )  ->  ( abs `  ( ( ( ( F `  S
)  -  ( F `
 U ) )  /  ( S  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  <  -u ( ( RR  _D  F ) `  U
) ) ) )
8483rspcv 3066 . . . . . . . . . 10  |-  ( S  e.  ( X  \  { U } )  -> 
( A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  T )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) )  -> 
( ( S  =/= 
U  /\  ( abs `  ( S  -  U
) )  <  T
)  ->  ( abs `  ( ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) )  -  (
( RR  _D  F
) `  U )
) )  <  -u (
( RR  _D  F
) `  U )
) ) )
8564, 65, 71, 84syl3c 61 . . . . . . . . 9  |-  ( ph  ->  ( abs `  (
( ( ( F `
 S )  -  ( F `  U ) )  /  ( S  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) )
86 dvferm.a . . . . . . . . . . . . 13  |-  ( ph  ->  F : X --> RR )
8786, 61ffvelrnd 5841 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  S
)  e.  RR )
8818, 1sseldd 3354 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  X )
8986, 88ffvelrnd 5841 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  U
)  e.  RR )
9087, 89resubcld 9772 . . . . . . . . . . 11  |-  ( ph  ->  ( ( F `  S )  -  ( F `  U )
)  e.  RR )
9145, 11resubcld 9772 . . . . . . . . . . 11  |-  ( ph  ->  ( S  -  U
)  e.  RR )
9245recnd 9408 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  CC )
9311recnd 9408 . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  CC )
9492, 93, 62subne0d 9724 . . . . . . . . . . 11  |-  ( ph  ->  ( S  -  U
)  =/=  0 )
9590, 91, 94redivcld 10155 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( F `
 S )  -  ( F `  U ) )  /  ( S  -  U ) )  e.  RR )
96 dvferm.b . . . . . . . . . . . 12  |-  ( ph  ->  X  C_  RR )
97 dvfre 21384 . . . . . . . . . . . 12  |-  ( ( F : X --> RR  /\  X  C_  RR )  -> 
( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
9886, 96, 97syl2anc 656 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
99 dvferm.d . . . . . . . . . . 11  |-  ( ph  ->  U  e.  dom  ( RR  _D  F ) )
10098, 99ffvelrnd 5841 . . . . . . . . . 10  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  e.  RR )
101100renegcld 9771 . . . . . . . . . 10  |-  ( ph  -> 
-u ( ( RR 
_D  F ) `  U )  e.  RR )
10295, 100, 101absdifltd 12916 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  (
( ( ( F `
 S )  -  ( F `  U ) )  /  ( S  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U )  <->  ( (
( ( RR  _D  F ) `  U
)  -  -u (
( RR  _D  F
) `  U )
)  <  ( (
( F `  S
)  -  ( F `
 U ) )  /  ( S  -  U ) )  /\  ( ( ( F `
 S )  -  ( F `  U ) )  /  ( S  -  U ) )  <  ( ( ( RR  _D  F ) `
 U )  + 
-u ( ( RR 
_D  F ) `  U ) ) ) ) )
10385, 102mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( RR  _D  F ) `
 U )  -  -u ( ( RR  _D  F ) `  U
) )  <  (
( ( F `  S )  -  ( F `  U )
)  /  ( S  -  U ) )  /\  ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) )  <  (
( ( RR  _D  F ) `  U
)  +  -u (
( RR  _D  F
) `  U )
) ) )
104103simprd 460 . . . . . . 7  |-  ( ph  ->  ( ( ( F `
 S )  -  ( F `  U ) )  /  ( S  -  U ) )  <  ( ( ( RR  _D  F ) `
 U )  + 
-u ( ( RR 
_D  F ) `  U ) ) )
105100recnd 9408 . . . . . . . 8  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  e.  CC )
106105negidd 9705 . . . . . . 7  |-  ( ph  ->  ( ( ( RR 
_D  F ) `  U )  +  -u ( ( RR  _D  F ) `  U
) )  =  0 )
107104, 106breqtrd 4313 . . . . . 6  |-  ( ph  ->  ( ( ( F `
 S )  -  ( F `  U ) )  /  ( S  -  U ) )  <  0 )
10895lt0neg1d 9905 . . . . . 6  |-  ( ph  ->  ( ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) )  <  0  <->  0  <  -u ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) ) ) )
109107, 108mpbid 210 . . . . 5  |-  ( ph  ->  0  <  -u (
( ( F `  S )  -  ( F `  U )
)  /  ( S  -  U ) ) )
11090recnd 9408 . . . . . 6  |-  ( ph  ->  ( ( F `  S )  -  ( F `  U )
)  e.  CC )
11191recnd 9408 . . . . . 6  |-  ( ph  ->  ( S  -  U
)  e.  CC )
112110, 111, 94divneg2d 10117 . . . . 5  |-  ( ph  -> 
-u ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) )  =  ( ( ( F `  S )  -  ( F `  U )
)  /  -u ( S  -  U )
) )
113109, 112breqtrd 4313 . . . 4  |-  ( ph  ->  0  <  ( ( ( F `  S
)  -  ( F `
 U ) )  /  -u ( S  -  U ) ) )
11491renegcld 9771 . . . . 5  |-  ( ph  -> 
-u ( S  -  U )  e.  RR )
11545, 11posdifd 9922 . . . . . . 7  |-  ( ph  ->  ( S  <  U  <->  0  <  ( U  -  S ) ) )
11657, 115mpbid 210 . . . . . 6  |-  ( ph  ->  0  <  ( U  -  S ) )
11792, 93negsubdi2d 9731 . . . . . 6  |-  ( ph  -> 
-u ( S  -  U )  =  ( U  -  S ) )
118116, 117breqtrrd 4315 . . . . 5  |-  ( ph  ->  0  <  -u ( S  -  U )
)
119 gt0div 10191 . . . . 5  |-  ( ( ( ( F `  S )  -  ( F `  U )
)  e.  RR  /\  -u ( S  -  U
)  e.  RR  /\  0  <  -u ( S  -  U ) )  -> 
( 0  <  (
( F `  S
)  -  ( F `
 U ) )  <->  0  <  ( ( ( F `  S
)  -  ( F `
 U ) )  /  -u ( S  -  U ) ) ) )
12090, 114, 118, 119syl3anc 1213 . . . 4  |-  ( ph  ->  ( 0  <  (
( F `  S
)  -  ( F `
 U ) )  <->  0  <  ( ( ( F `  S
)  -  ( F `
 U ) )  /  -u ( S  -  U ) ) ) )
121113, 120mpbird 232 . . 3  |-  ( ph  ->  0  <  ( ( F `  S )  -  ( F `  U ) ) )
12289, 87posdifd 9922 . . 3  |-  ( ph  ->  ( ( F `  U )  <  ( F `  S )  <->  0  <  ( ( F `
 S )  -  ( F `  U ) ) ) )
123121, 122mpbird 232 . 2  |-  ( ph  ->  ( F `  U
)  <  ( F `  S ) )
124 dvferm2.r . . . 4  |-  ( ph  ->  A. y  e.  ( A (,) U ) ( F `  y
)  <_  ( F `  U ) )
125 fveq2 5688 . . . . . 6  |-  ( y  =  S  ->  ( F `  y )  =  ( F `  S ) )
126125breq1d 4299 . . . . 5  |-  ( y  =  S  ->  (
( F `  y
)  <_  ( F `  U )  <->  ( F `  S )  <_  ( F `  U )
) )
127126rspcv 3066 . . . 4  |-  ( S  e.  ( A (,) U )  ->  ( A. y  e.  ( A (,) U ) ( F `  y )  <_  ( F `  U )  ->  ( F `  S )  <_  ( F `  U
) ) )
12860, 124, 127sylc 60 . . 3  |-  ( ph  ->  ( F `  S
)  <_  ( F `  U ) )
12987, 89lenltd 9516 . . 3  |-  ( ph  ->  ( ( F `  S )  <_  ( F `  U )  <->  -.  ( F `  U
)  <  ( F `  S ) ) )
130128, 129mpbid 210 . 2  |-  ( ph  ->  -.  ( F `  U )  <  ( F `  S )
)
131123, 130pm2.65i 173 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713    \ cdif 3322    C_ wss 3325   (/)c0 3634   ifcif 3788   {csn 3874   class class class wbr 4289   dom cdm 4836   -->wf 5411   ` cfv 5415  (class class class)co 6090   RRcr 9277   0cc0 9278    + caddc 9281   -oocmnf 9412   RR*cxr 9413    < clt 9414    <_ cle 9415    - cmin 9591   -ucneg 9592    / cdiv 9989   2c2 10367   RR+crp 10987   (,)cioo 11296   abscabs 12719    _D cdv 21297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fi 7657  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-icc 11303  df-fz 11434  df-seq 11803  df-exp 11862  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-plusg 14247  df-mulr 14248  df-starv 14249  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-rest 14357  df-topn 14358  df-topgen 14378  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-fbas 17773  df-fg 17774  df-cnfld 17778  df-top 18462  df-bases 18464  df-topon 18465  df-topsp 18466  df-cld 18582  df-ntr 18583  df-cls 18584  df-nei 18661  df-lp 18699  df-perf 18700  df-cn 18790  df-cnp 18791  df-haus 18878  df-fil 19378  df-fm 19470  df-flim 19471  df-flf 19472  df-xms 19854  df-ms 19855  df-cncf 20413  df-limc 21300  df-dv 21301
This theorem is referenced by:  dvferm2  21418
  Copyright terms: Public domain W3C validator