MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm2 Structured version   Unicode version

Theorem dvferm2 21439
Description: One-sided version of dvferm 21440. A point  U which is the local maximum of its left neighborhood has derivative at least zero. (Contributed by Mario Carneiro, 24-Feb-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvferm.a  |-  ( ph  ->  F : X --> RR )
dvferm.b  |-  ( ph  ->  X  C_  RR )
dvferm.u  |-  ( ph  ->  U  e.  ( A (,) B ) )
dvferm.s  |-  ( ph  ->  ( A (,) B
)  C_  X )
dvferm.d  |-  ( ph  ->  U  e.  dom  ( RR  _D  F ) )
dvferm2.r  |-  ( ph  ->  A. y  e.  ( A (,) U ) ( F `  y
)  <_  ( F `  U ) )
Assertion
Ref Expression
dvferm2  |-  ( ph  ->  0  <_  ( ( RR  _D  F ) `  U ) )
Distinct variable groups:    y, A    y, B    y, F    y, U    y, X    ph, y

Proof of Theorem dvferm2
Dummy variables  z  x  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvferm.a . . . . . . . . 9  |-  ( ph  ->  F : X --> RR )
2 dvferm.b . . . . . . . . 9  |-  ( ph  ->  X  C_  RR )
3 dvfre 21405 . . . . . . . . 9  |-  ( ( F : X --> RR  /\  X  C_  RR )  -> 
( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
41, 2, 3syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
5 dvferm.d . . . . . . . 8  |-  ( ph  ->  U  e.  dom  ( RR  _D  F ) )
64, 5ffvelrnd 5839 . . . . . . 7  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  e.  RR )
76adantr 465 . . . . . 6  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  ( ( RR  _D  F ) `  U )  e.  RR )
87renegcld 9767 . . . . 5  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  -u ( ( RR  _D  F ) `
 U )  e.  RR )
96lt0neg1d 9901 . . . . . 6  |-  ( ph  ->  ( ( ( RR 
_D  F ) `  U )  <  0  <->  0  <  -u ( ( RR 
_D  F ) `  U ) ) )
109biimpa 484 . . . . 5  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  0  <  -u ( ( RR  _D  F ) `  U
) )
118, 10elrpd 11017 . . . 4  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  -u ( ( RR  _D  F ) `
 U )  e.  RR+ )
12 dvf 21362 . . . . . . . . . . 11  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
13 ffun 5556 . . . . . . . . . . 11  |-  ( ( RR  _D  F ) : dom  ( RR 
_D  F ) --> CC 
->  Fun  ( RR  _D  F ) )
14 funfvbrb 5811 . . . . . . . . . . 11  |-  ( Fun  ( RR  _D  F
)  ->  ( U  e.  dom  ( RR  _D  F )  <->  U ( RR  _D  F ) ( ( RR  _D  F
) `  U )
) )
1512, 13, 14mp2b 10 . . . . . . . . . 10  |-  ( U  e.  dom  ( RR 
_D  F )  <->  U ( RR  _D  F ) ( ( RR  _D  F
) `  U )
)
165, 15sylib 196 . . . . . . . . 9  |-  ( ph  ->  U ( RR  _D  F ) ( ( RR  _D  F ) `
 U ) )
17 eqid 2438 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  RR )  =  ( ( TopOpen ` fld )t  RR )
18 eqid 2438 . . . . . . . . . 10  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
19 eqid 2438 . . . . . . . . . 10  |-  ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x )  -  ( F `  U )
)  /  ( x  -  U ) ) )  =  ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x )  -  ( F `  U )
)  /  ( x  -  U ) ) )
20 ax-resscn 9331 . . . . . . . . . . 11  |-  RR  C_  CC
2120a1i 11 . . . . . . . . . 10  |-  ( ph  ->  RR  C_  CC )
22 fss 5562 . . . . . . . . . . 11  |-  ( ( F : X --> RR  /\  RR  C_  CC )  ->  F : X --> CC )
231, 20, 22sylancl 662 . . . . . . . . . 10  |-  ( ph  ->  F : X --> CC )
2417, 18, 19, 21, 23, 2eldv 21353 . . . . . . . . 9  |-  ( ph  ->  ( U ( RR 
_D  F ) ( ( RR  _D  F
) `  U )  <->  ( U  e.  ( ( int `  ( (
TopOpen ` fld )t  RR ) ) `  X )  /\  (
( RR  _D  F
) `  U )  e.  ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) lim
CC  U ) ) ) )
2516, 24mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( U  e.  ( ( int `  (
( TopOpen ` fld )t  RR ) ) `  X )  /\  (
( RR  _D  F
) `  U )  e.  ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) lim
CC  U ) ) )
2625simprd 463 . . . . . . 7  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  e.  ( ( x  e.  ( X 
\  { U }
)  |->  ( ( ( F `  x )  -  ( F `  U ) )  / 
( x  -  U
) ) ) lim CC  U ) )
2726adantr 465 . . . . . 6  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  ( ( RR  _D  F ) `  U )  e.  ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) lim
CC  U ) )
282, 20syl6ss 3363 . . . . . . . . . 10  |-  ( ph  ->  X  C_  CC )
29 dvferm.s . . . . . . . . . . 11  |-  ( ph  ->  ( A (,) B
)  C_  X )
30 dvferm.u . . . . . . . . . . 11  |-  ( ph  ->  U  e.  ( A (,) B ) )
3129, 30sseldd 3352 . . . . . . . . . 10  |-  ( ph  ->  U  e.  X )
3223, 28, 31dvlem 21351 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  \  { U } ) )  -> 
( ( ( F `
 x )  -  ( F `  U ) )  /  ( x  -  U ) )  e.  CC )
3332, 19fmptd 5862 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) : ( X  \  { U } ) --> CC )
3433adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) : ( X  \  { U } ) --> CC )
3528adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  X  C_  CC )
3635ssdifssd 3489 . . . . . . 7  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  ( X  \  { U } ) 
C_  CC )
3728, 31sseldd 3352 . . . . . . . 8  |-  ( ph  ->  U  e.  CC )
3837adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  U  e.  CC )
3934, 36, 38ellimc3 21334 . . . . . 6  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  ( (
( RR  _D  F
) `  U )  e.  ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) lim
CC  U )  <->  ( (
( RR  _D  F
) `  U )  e.  CC  /\  A. y  e.  RR+  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y ) ) ) )
4027, 39mpbid 210 . . . . 5  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  ( (
( RR  _D  F
) `  U )  e.  CC  /\  A. y  e.  RR+  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y ) ) )
4140simprd 463 . . . 4  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  A. y  e.  RR+  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y ) )
42 fveq2 5686 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
4342oveq1d 6101 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( F `  x
)  -  ( F `
 U ) )  =  ( ( F `
 z )  -  ( F `  U ) ) )
44 oveq1 6093 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
x  -  U )  =  ( z  -  U ) )
4543, 44oveq12d 6104 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( ( F `  x )  -  ( F `  U )
)  /  ( x  -  U ) )  =  ( ( ( F `  z )  -  ( F `  U ) )  / 
( z  -  U
) ) )
46 ovex 6111 . . . . . . . . . . . 12  |-  ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  e. 
_V
4745, 19, 46fvmpt 5769 . . . . . . . . . . 11  |-  ( z  e.  ( X  \  { U } )  -> 
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  =  ( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) ) )
4847oveq1d 6101 . . . . . . . . . 10  |-  ( z  e.  ( X  \  { U } )  -> 
( ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x )  -  ( F `  U )
)  /  ( x  -  U ) ) ) `  z )  -  ( ( RR 
_D  F ) `  U ) )  =  ( ( ( ( F `  z )  -  ( F `  U ) )  / 
( z  -  U
) )  -  (
( RR  _D  F
) `  U )
) )
4948fveq2d 5690 . . . . . . . . 9  |-  ( z  e.  ( X  \  { U } )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  =  ( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) ) )
50 id 22 . . . . . . . . 9  |-  ( y  =  -u ( ( RR 
_D  F ) `  U )  ->  y  =  -u ( ( RR 
_D  F ) `  U ) )
5149, 50breqan12rd 4303 . . . . . . . 8  |-  ( ( y  =  -u (
( RR  _D  F
) `  U )  /\  z  e.  ( X  \  { U }
) )  ->  (
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y  <->  ( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )
5251imbi2d 316 . . . . . . 7  |-  ( ( y  =  -u (
( RR  _D  F
) `  U )  /\  z  e.  ( X  \  { U }
) )  ->  (
( ( z  =/= 
U  /\  ( abs `  ( z  -  U
) )  <  u
)  ->  ( abs `  ( ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x )  -  ( F `  U )
)  /  ( x  -  U ) ) ) `  z )  -  ( ( RR 
_D  F ) `  U ) ) )  <  y )  <->  ( (
z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) ) )
5352ralbidva 2726 . . . . . 6  |-  ( y  =  -u ( ( RR 
_D  F ) `  U )  ->  ( A. z  e.  ( X  \  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( x  e.  ( X 
\  { U }
)  |->  ( ( ( F `  x )  -  ( F `  U ) )  / 
( x  -  U
) ) ) `  z )  -  (
( RR  _D  F
) `  U )
) )  <  y
)  <->  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) ) )
5453rexbidv 2731 . . . . 5  |-  ( y  =  -u ( ( RR 
_D  F ) `  U )  ->  ( E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y )  <->  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) ) )
5554rspcv 3064 . . . 4  |-  ( -u ( ( RR  _D  F ) `  U
)  e.  RR+  ->  ( A. y  e.  RR+  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y )  ->  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) ) )
5611, 41, 55sylc 60 . . 3  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )
571ad3antrrr 729 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )  ->  F : X --> RR )
582ad3antrrr 729 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )  ->  X  C_  RR )
5930ad3antrrr 729 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )  ->  U  e.  ( A (,) B ) )
6029ad3antrrr 729 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )  ->  ( A (,) B )  C_  X
)
615ad3antrrr 729 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )  ->  U  e.  dom  ( RR  _D  F
) )
62 dvferm2.r . . . . . . 7  |-  ( ph  ->  A. y  e.  ( A (,) U ) ( F `  y
)  <_  ( F `  U ) )
6362ad3antrrr 729 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )  ->  A. y  e.  ( A (,) U ) ( F `  y
)  <_  ( F `  U ) )
64 simpllr 758 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )  ->  ( ( RR 
_D  F ) `  U )  <  0
)
65 simplr 754 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )  ->  u  e.  RR+ )
66 simpr 461 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )  ->  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )
67 eqid 2438 . . . . . 6  |-  ( ( if ( A  <_ 
( U  -  u
) ,  ( U  -  u ) ,  A )  +  U
)  /  2 )  =  ( ( if ( A  <_  ( U  -  u ) ,  ( U  -  u ) ,  A
)  +  U )  /  2 )
6857, 58, 59, 60, 61, 63, 64, 65, 66, 67dvferm2lem 21438 . . . . 5  |-  -.  (
( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )
6968imnani 423 . . . 4  |-  ( ( ( ph  /\  (
( RR  _D  F
) `  U )  <  0 )  /\  u  e.  RR+ )  ->  -.  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  <  -u ( ( RR  _D  F ) `  U
) ) )
7069nrexdv 2814 . . 3  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  -.  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )
7156, 70pm2.65da 576 . 2  |-  ( ph  ->  -.  ( ( RR 
_D  F ) `  U )  <  0
)
72 0re 9378 . . 3  |-  0  e.  RR
73 lenlt 9445 . . 3  |-  ( ( 0  e.  RR  /\  ( ( RR  _D  F ) `  U
)  e.  RR )  ->  ( 0  <_ 
( ( RR  _D  F ) `  U
)  <->  -.  ( ( RR  _D  F ) `  U )  <  0
) )
7472, 6, 73sylancr 663 . 2  |-  ( ph  ->  ( 0  <_  (
( RR  _D  F
) `  U )  <->  -.  ( ( RR  _D  F ) `  U
)  <  0 ) )
7571, 74mpbird 232 1  |-  ( ph  ->  0  <_  ( ( RR  _D  F ) `  U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710   E.wrex 2711    \ cdif 3320    C_ wss 3323   ifcif 3786   {csn 3872   class class class wbr 4287    e. cmpt 4345   dom cdm 4835   Fun wfun 5407   -->wf 5409   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274    + caddc 9277    < clt 9410    <_ cle 9411    - cmin 9587   -ucneg 9588    / cdiv 9985   2c2 10363   RR+crp 10983   (,)cioo 11292   abscabs 12715   ↾t crest 14351   TopOpenctopn 14352  ℂfldccnfld 17798   intcnt 18601   lim CC climc 21317    _D cdv 21318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fi 7653  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-icc 11299  df-fz 11430  df-seq 11799  df-exp 11858  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-plusg 14243  df-mulr 14244  df-starv 14245  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-rest 14353  df-topn 14354  df-topgen 14374  df-psmet 17789  df-xmet 17790  df-met 17791  df-bl 17792  df-mopn 17793  df-fbas 17794  df-fg 17795  df-cnfld 17799  df-top 18483  df-bases 18485  df-topon 18486  df-topsp 18487  df-cld 18603  df-ntr 18604  df-cls 18605  df-nei 18682  df-lp 18720  df-perf 18721  df-cn 18811  df-cnp 18812  df-haus 18899  df-fil 19399  df-fm 19491  df-flim 19492  df-flf 19493  df-xms 19875  df-ms 19876  df-cncf 20434  df-limc 21321  df-dv 21322
This theorem is referenced by:  dvferm  21440  dvivthlem1  21460
  Copyright terms: Public domain W3C validator