MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvexp2 Structured version   Unicode version

Theorem dvexp2 22850
Description: Derivative of an exponential, possibly zero power. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvexp2  |-  ( N  e.  NN0  ->  ( CC 
_D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( x  e.  CC  |->  if ( N  =  0 ,  0 ,  ( N  x.  ( x ^ ( N  -  1 ) ) ) ) ) )
Distinct variable group:    x, N

Proof of Theorem dvexp2
StepHypRef Expression
1 elnn0 10822 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 dvexp 22849 . . . 4  |-  ( N  e.  NN  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( x  e.  CC  |->  ( N  x.  ( x ^ ( N  -  1 ) ) ) ) )
3 nnne0 10593 . . . . . . 7  |-  ( N  e.  NN  ->  N  =/=  0 )
43neneqd 2606 . . . . . 6  |-  ( N  e.  NN  ->  -.  N  =  0 )
54iffalsed 3865 . . . . 5  |-  ( N  e.  NN  ->  if ( N  =  0 ,  0 ,  ( N  x.  ( x ^ ( N  - 
1 ) ) ) )  =  ( N  x.  ( x ^
( N  -  1 ) ) ) )
65mpteq2dv 4454 . . . 4  |-  ( N  e.  NN  ->  (
x  e.  CC  |->  if ( N  =  0 ,  0 ,  ( N  x.  ( x ^ ( N  - 
1 ) ) ) ) )  =  ( x  e.  CC  |->  ( N  x.  ( x ^ ( N  - 
1 ) ) ) ) )
72, 6eqtr4d 2465 . . 3  |-  ( N  e.  NN  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( x  e.  CC  |->  if ( N  =  0 ,  0 ,  ( N  x.  ( x ^ ( N  -  1 ) ) ) ) ) )
8 oveq2 6257 . . . . . . . . . 10  |-  ( N  =  0  ->  (
x ^ N )  =  ( x ^
0 ) )
9 exp0 12226 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
x ^ 0 )  =  1 )
108, 9sylan9eq 2482 . . . . . . . . 9  |-  ( ( N  =  0  /\  x  e.  CC )  ->  ( x ^ N )  =  1 )
1110mpteq2dva 4453 . . . . . . . 8  |-  ( N  =  0  ->  (
x  e.  CC  |->  ( x ^ N ) )  =  ( x  e.  CC  |->  1 ) )
12 fconstmpt 4840 . . . . . . . 8  |-  ( CC 
X.  { 1 } )  =  ( x  e.  CC  |->  1 )
1311, 12syl6eqr 2480 . . . . . . 7  |-  ( N  =  0  ->  (
x  e.  CC  |->  ( x ^ N ) )  =  ( CC 
X.  { 1 } ) )
1413oveq2d 6265 . . . . . 6  |-  ( N  =  0  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( CC  _D  ( CC  X.  { 1 } ) ) )
15 ax-1cn 9548 . . . . . . 7  |-  1  e.  CC
16 dvconst 22813 . . . . . . 7  |-  ( 1  e.  CC  ->  ( CC  _D  ( CC  X.  { 1 } ) )  =  ( CC 
X.  { 0 } ) )
1715, 16ax-mp 5 . . . . . 6  |-  ( CC 
_D  ( CC  X.  { 1 } ) )  =  ( CC 
X.  { 0 } )
1814, 17syl6eq 2478 . . . . 5  |-  ( N  =  0  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( CC  X.  { 0 } ) )
19 fconstmpt 4840 . . . . 5  |-  ( CC 
X.  { 0 } )  =  ( x  e.  CC  |->  0 )
2018, 19syl6eq 2478 . . . 4  |-  ( N  =  0  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( x  e.  CC  |->  0 ) )
21 iftrue 3860 . . . . 5  |-  ( N  =  0  ->  if ( N  =  0 ,  0 ,  ( N  x.  ( x ^ ( N  - 
1 ) ) ) )  =  0 )
2221mpteq2dv 4454 . . . 4  |-  ( N  =  0  ->  (
x  e.  CC  |->  if ( N  =  0 ,  0 ,  ( N  x.  ( x ^ ( N  - 
1 ) ) ) ) )  =  ( x  e.  CC  |->  0 ) )
2320, 22eqtr4d 2465 . . 3  |-  ( N  =  0  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( x  e.  CC  |->  if ( N  =  0 ,  0 ,  ( N  x.  ( x ^ ( N  -  1 ) ) ) ) ) )
247, 23jaoi 380 . 2  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N
) ) )  =  ( x  e.  CC  |->  if ( N  =  0 ,  0 ,  ( N  x.  ( x ^ ( N  - 
1 ) ) ) ) ) )
251, 24sylbi 198 1  |-  ( N  e.  NN0  ->  ( CC 
_D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( x  e.  CC  |->  if ( N  =  0 ,  0 ,  ( N  x.  ( x ^ ( N  -  1 ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 369    = wceq 1437    e. wcel 1872   ifcif 3854   {csn 3941    |-> cmpt 4425    X. cxp 4794  (class class class)co 6249   CCcc 9488   0cc0 9490   1c1 9491    x. cmul 9495    - cmin 9811   NNcn 10560   NN0cn0 10820   ^cexp 12222    _D cdv 22760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-inf2 8099  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568  ax-addf 9569  ax-mulf 9570
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-iin 4245  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-se 4756  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-isom 5553  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-of 6489  df-om 6651  df-1st 6751  df-2nd 6752  df-supp 6870  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-1o 7137  df-2o 7138  df-oadd 7141  df-er 7318  df-map 7429  df-pm 7430  df-ixp 7478  df-en 7525  df-dom 7526  df-sdom 7527  df-fin 7528  df-fsupp 7837  df-fi 7878  df-sup 7909  df-inf 7910  df-oi 7978  df-card 8325  df-cda 8549  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-div 10221  df-nn 10561  df-2 10619  df-3 10620  df-4 10621  df-5 10622  df-6 10623  df-7 10624  df-8 10625  df-9 10626  df-10 10627  df-n0 10821  df-z 10889  df-dec 11003  df-uz 11111  df-q 11216  df-rp 11254  df-xneg 11360  df-xadd 11361  df-xmul 11362  df-icc 11593  df-fz 11736  df-fzo 11867  df-seq 12164  df-exp 12223  df-hash 12466  df-cj 13106  df-re 13107  df-im 13108  df-sqrt 13242  df-abs 13243  df-struct 15066  df-ndx 15067  df-slot 15068  df-base 15069  df-sets 15070  df-ress 15071  df-plusg 15146  df-mulr 15147  df-starv 15148  df-sca 15149  df-vsca 15150  df-ip 15151  df-tset 15152  df-ple 15153  df-ds 15155  df-unif 15156  df-hom 15157  df-cco 15158  df-rest 15264  df-topn 15265  df-0g 15283  df-gsum 15284  df-topgen 15285  df-pt 15286  df-prds 15289  df-xrs 15343  df-qtop 15349  df-imas 15350  df-xps 15353  df-mre 15435  df-mrc 15436  df-acs 15438  df-mgm 16431  df-sgrp 16470  df-mnd 16480  df-submnd 16526  df-mulg 16619  df-cntz 16914  df-cmn 17375  df-psmet 18905  df-xmet 18906  df-met 18907  df-bl 18908  df-mopn 18909  df-fbas 18910  df-fg 18911  df-cnfld 18914  df-top 19863  df-bases 19864  df-topon 19865  df-topsp 19866  df-cld 19976  df-ntr 19977  df-cls 19978  df-nei 20056  df-lp 20094  df-perf 20095  df-cn 20185  df-cnp 20186  df-haus 20273  df-tx 20519  df-hmeo 20712  df-fil 20803  df-fm 20895  df-flim 20896  df-flf 20897  df-xms 21277  df-ms 21278  df-tms 21279  df-cncf 21852  df-limc 22763  df-dv 22764
This theorem is referenced by:  dvexp3  22872  dvply1  23179  dvtaylp  23267  pserdvlem2  23325
  Copyright terms: Public domain W3C validator