MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveq0 Structured version   Unicode version

Theorem dveq0 21470
Description: If a continuous function has zero derivative at all points on the interior of a closed interval, then it must be a constant function. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
dveq0.a  |-  ( ph  ->  A  e.  RR )
dveq0.b  |-  ( ph  ->  B  e.  RR )
dveq0.c  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
dveq0.d  |-  ( ph  ->  ( RR  _D  F
)  =  ( ( A (,) B )  X.  { 0 } ) )
Assertion
Ref Expression
dveq0  |-  ( ph  ->  F  =  ( ( A [,] B )  X.  { ( F `
 A ) } ) )

Proof of Theorem dveq0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dveq0.c . . . 4  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
2 cncff 20467 . . . 4  |-  ( F  e.  ( ( A [,] B ) -cn-> CC )  ->  F :
( A [,] B
) --> CC )
31, 2syl 16 . . 3  |-  ( ph  ->  F : ( A [,] B ) --> CC )
4 ffn 5557 . . 3  |-  ( F : ( A [,] B ) --> CC  ->  F  Fn  ( A [,] B ) )
53, 4syl 16 . 2  |-  ( ph  ->  F  Fn  ( A [,] B ) )
6 fvex 5699 . . 3  |-  ( F `
 A )  e. 
_V
7 fnconstg 5596 . . 3  |-  ( ( F `  A )  e.  _V  ->  (
( A [,] B
)  X.  { ( F `  A ) } )  Fn  ( A [,] B ) )
86, 7mp1i 12 . 2  |-  ( ph  ->  ( ( A [,] B )  X.  {
( F `  A
) } )  Fn  ( A [,] B
) )
96fvconst2 5931 . . . 4  |-  ( x  e.  ( A [,] B )  ->  (
( ( A [,] B )  X.  {
( F `  A
) } ) `  x )  =  ( F `  A ) )
109adantl 466 . . 3  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( (
( A [,] B
)  X.  { ( F `  A ) } ) `  x
)  =  ( F `
 A ) )
113adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  F :
( A [,] B
) --> CC )
12 dveq0.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
1312adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A  e.  RR )
1413rexrd 9431 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A  e.  RR* )
15 dveq0.b . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
1615adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR )
1716rexrd 9431 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR* )
18 elicc2 11358 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
1912, 15, 18syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
2019biimpa 484 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( x  e.  RR  /\  A  <_  x  /\  x  <_  B
) )
2120simp1d 1000 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  RR )
2220simp2d 1001 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A  <_  x )
2320simp3d 1002 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  <_  B )
2413, 21, 16, 22, 23letrd 9526 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A  <_  B )
25 lbicc2 11399 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
2614, 17, 24, 25syl3anc 1218 . . . . 5  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A  e.  ( A [,] B ) )
2711, 26ffvelrnd 5842 . . . 4  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  A )  e.  CC )
283ffvelrnda 5841 . . . 4  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  CC )
2927, 28subcld 9717 . . . . 5  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( ( F `  A )  -  ( F `  x ) )  e.  CC )
30 simpr 461 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  ( A [,] B ) )
3126, 30jca 532 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A  e.  ( A [,] B
)  /\  x  e.  ( A [,] B ) ) )
32 dveq0.d . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  F
)  =  ( ( A (,) B )  X.  { 0 } ) )
3332dmeqd 5040 . . . . . . . . . 10  |-  ( ph  ->  dom  ( RR  _D  F )  =  dom  ( ( A (,) B )  X.  {
0 } ) )
34 c0ex 9378 . . . . . . . . . . . 12  |-  0  e.  _V
3534snnz 3991 . . . . . . . . . . 11  |-  { 0 }  =/=  (/)
36 dmxp 5056 . . . . . . . . . . 11  |-  ( { 0 }  =/=  (/)  ->  dom  ( ( A (,) B )  X.  {
0 } )  =  ( A (,) B
) )
3735, 36ax-mp 5 . . . . . . . . . 10  |-  dom  (
( A (,) B
)  X.  { 0 } )  =  ( A (,) B )
3833, 37syl6eq 2489 . . . . . . . . 9  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
39 0red 9385 . . . . . . . . 9  |-  ( ph  ->  0  e.  RR )
4032fveq1d 5691 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( RR  _D  F ) `  y
)  =  ( ( ( A (,) B
)  X.  { 0 } ) `  y
) )
4134fvconst2 5931 . . . . . . . . . . . 12  |-  ( y  e.  ( A (,) B )  ->  (
( ( A (,) B )  X.  {
0 } ) `  y )  =  0 )
4240, 41sylan9eq 2493 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  y )  =  0 )
4342abs00bd 12778 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( abs `  ( ( RR  _D  F ) `  y
) )  =  0 )
44 0le0 10409 . . . . . . . . . 10  |-  0  <_  0
4543, 44syl6eqbr 4327 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( abs `  ( ( RR  _D  F ) `  y
) )  <_  0
)
4612, 15, 1, 38, 39, 45dvlip 21463 . . . . . . . 8  |-  ( (
ph  /\  ( A  e.  ( A [,] B
)  /\  x  e.  ( A [,] B ) ) )  ->  ( abs `  ( ( F `
 A )  -  ( F `  x ) ) )  <_  (
0  x.  ( abs `  ( A  -  x
) ) ) )
4731, 46syldan 470 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( abs `  ( ( F `  A )  -  ( F `  x )
) )  <_  (
0  x.  ( abs `  ( A  -  x
) ) ) )
4813recnd 9410 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A  e.  CC )
4921recnd 9410 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  CC )
5048, 49subcld 9717 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A  -  x )  e.  CC )
5150abscld 12920 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( abs `  ( A  -  x
) )  e.  RR )
5251recnd 9410 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( abs `  ( A  -  x
) )  e.  CC )
5352mul02d 9565 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( 0  x.  ( abs `  ( A  -  x )
) )  =  0 )
5447, 53breqtrd 4314 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( abs `  ( ( F `  A )  -  ( F `  x )
) )  <_  0
)
5529absge0d 12928 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  0  <_  ( abs `  ( ( F `  A )  -  ( F `  x ) ) ) )
5629abscld 12920 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( abs `  ( ( F `  A )  -  ( F `  x )
) )  e.  RR )
57 0re 9384 . . . . . . 7  |-  0  e.  RR
58 letri3 9458 . . . . . . 7  |-  ( ( ( abs `  (
( F `  A
)  -  ( F `
 x ) ) )  e.  RR  /\  0  e.  RR )  ->  ( ( abs `  (
( F `  A
)  -  ( F `
 x ) ) )  =  0  <->  (
( abs `  (
( F `  A
)  -  ( F `
 x ) ) )  <_  0  /\  0  <_  ( abs `  (
( F `  A
)  -  ( F `
 x ) ) ) ) ) )
5956, 57, 58sylancl 662 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( ( abs `  ( ( F `
 A )  -  ( F `  x ) ) )  =  0  <-> 
( ( abs `  (
( F `  A
)  -  ( F `
 x ) ) )  <_  0  /\  0  <_  ( abs `  (
( F `  A
)  -  ( F `
 x ) ) ) ) ) )
6054, 55, 59mpbir2and 913 . . . . 5  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( abs `  ( ( F `  A )  -  ( F `  x )
) )  =  0 )
6129, 60abs00d 12930 . . . 4  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( ( F `  A )  -  ( F `  x ) )  =  0 )
6227, 28, 61subeq0d 9725 . . 3  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  A )  =  ( F `  x ) )
6310, 62eqtr2d 2474 . 2  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  =  ( ( ( A [,] B )  X.  {
( F `  A
) } ) `  x ) )
645, 8, 63eqfnfvd 5798 1  |-  ( ph  ->  F  =  ( ( A [,] B )  X.  { ( F `
 A ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2604   _Vcvv 2970   (/)c0 3635   {csn 3875   class class class wbr 4290    X. cxp 4836   dom cdm 4838    Fn wfn 5411   -->wf 5412   ` cfv 5416  (class class class)co 6089   CCcc 9278   RRcr 9279   0cc0 9280    x. cmul 9285   RR*cxr 9415    <_ cle 9417    - cmin 9593   (,)cioo 11298   [,]cicc 11301   abscabs 12721   -cn->ccncf 20450    _D cdv 21336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-inf2 7845  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357  ax-pre-sup 9358  ax-addf 9359  ax-mulf 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-iin 4172  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-se 4678  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-isom 5425  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-of 6318  df-om 6475  df-1st 6575  df-2nd 6576  df-supp 6689  df-recs 6830  df-rdg 6864  df-1o 6918  df-2o 6919  df-oadd 6922  df-er 7099  df-map 7214  df-pm 7215  df-ixp 7262  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-fsupp 7619  df-fi 7659  df-sup 7689  df-oi 7722  df-card 8107  df-cda 8335  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-div 9992  df-nn 10321  df-2 10378  df-3 10379  df-4 10380  df-5 10381  df-6 10382  df-7 10383  df-8 10384  df-9 10385  df-10 10386  df-n0 10578  df-z 10645  df-dec 10754  df-uz 10860  df-q 10952  df-rp 10990  df-xneg 11087  df-xadd 11088  df-xmul 11089  df-ioo 11302  df-ico 11304  df-icc 11305  df-fz 11436  df-fzo 11547  df-seq 11805  df-exp 11864  df-hash 12102  df-cj 12586  df-re 12587  df-im 12588  df-sqr 12722  df-abs 12723  df-struct 14174  df-ndx 14175  df-slot 14176  df-base 14177  df-sets 14178  df-ress 14179  df-plusg 14249  df-mulr 14250  df-starv 14251  df-sca 14252  df-vsca 14253  df-ip 14254  df-tset 14255  df-ple 14256  df-ds 14258  df-unif 14259  df-hom 14260  df-cco 14261  df-rest 14359  df-topn 14360  df-0g 14378  df-gsum 14379  df-topgen 14380  df-pt 14381  df-prds 14384  df-xrs 14438  df-qtop 14443  df-imas 14444  df-xps 14446  df-mre 14522  df-mrc 14523  df-acs 14525  df-mnd 15413  df-submnd 15463  df-mulg 15546  df-cntz 15833  df-cmn 16277  df-psmet 17807  df-xmet 17808  df-met 17809  df-bl 17810  df-mopn 17811  df-fbas 17812  df-fg 17813  df-cnfld 17817  df-top 18501  df-bases 18503  df-topon 18504  df-topsp 18505  df-cld 18621  df-ntr 18622  df-cls 18623  df-nei 18700  df-lp 18738  df-perf 18739  df-cn 18829  df-cnp 18830  df-haus 18917  df-cmp 18988  df-tx 19133  df-hmeo 19326  df-fil 19417  df-fm 19509  df-flim 19510  df-flf 19511  df-xms 19893  df-ms 19894  df-tms 19895  df-cncf 20452  df-limc 21339  df-dv 21340
This theorem is referenced by:  ftc2  21514  ftc2nc  28473
  Copyright terms: Public domain W3C validator