MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvef Structured version   Unicode version

Theorem dvef 21432
Description: Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvef  |-  ( CC 
_D  exp )  =  exp

Proof of Theorem dvef
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfcn 21363 . . . . . . 7  |-  ( CC 
_D  exp ) : dom  ( CC  _D  exp ) --> CC
2 dvbsss 21357 . . . . . . . . 9  |-  dom  ( CC  _D  exp )  C_  CC
3 efcl 13360 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  ( exp `  x )  e.  CC )
4 fconstg 5592 . . . . . . . . . . . . . . . 16  |-  ( ( exp `  x )  e.  CC  ->  ( CC  X.  { ( exp `  x ) } ) : CC --> { ( exp `  x ) } )
53, 4syl 16 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  ( CC  X.  { ( exp `  x ) } ) : CC --> { ( exp `  x ) } )
63snssd 4013 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  { ( exp `  x ) }  C_  CC )
7 fss 5562 . . . . . . . . . . . . . . 15  |-  ( ( ( CC  X.  {
( exp `  x
) } ) : CC --> { ( exp `  x ) }  /\  { ( exp `  x
) }  C_  CC )  ->  ( CC  X.  { ( exp `  x
) } ) : CC --> CC )
85, 6, 7syl2anc 661 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  ( CC  X.  { ( exp `  x ) } ) : CC --> CC )
9 ssid 3370 . . . . . . . . . . . . . . 15  |-  CC  C_  CC
109a1i 11 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  CC  C_  CC )
11 subcl 9601 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  CC  /\  x  e.  CC )  ->  ( z  -  x
)  e.  CC )
1211ancoms 453 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( z  -  x
)  e.  CC )
13 efcl 13360 . . . . . . . . . . . . . . . 16  |-  ( ( z  -  x )  e.  CC  ->  ( exp `  ( z  -  x ) )  e.  CC )
1412, 13syl 16 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
z  -  x ) )  e.  CC )
15 eqid 2438 . . . . . . . . . . . . . . 15  |-  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) )  =  ( z  e.  CC  |->  ( exp `  ( z  -  x ) ) )
1614, 15fmptd 5862 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) : CC --> CC )
17 0cn 9370 . . . . . . . . . . . . . . 15  |-  0  e.  CC
1817a1i 11 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  0  e.  CC )
19 ax-1cn 9332 . . . . . . . . . . . . . . 15  |-  1  e.  CC
2019a1i 11 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  1  e.  CC )
2117elexi 2977 . . . . . . . . . . . . . . . . . 18  |-  0  e.  _V
2221snid 3900 . . . . . . . . . . . . . . . . 17  |-  0  e.  { 0 }
23 opelxpi 4866 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  0  e.  { 0 } )  ->  <. x ,  0 >.  e.  ( CC  X.  { 0 } ) )
2422, 23mpan2 671 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  <. x ,  0 >.  e.  ( CC  X.  { 0 } ) )
25 dvconst 21371 . . . . . . . . . . . . . . . . 17  |-  ( ( exp `  x )  e.  CC  ->  ( CC  _D  ( CC  X.  { ( exp `  x
) } ) )  =  ( CC  X.  { 0 } ) )
263, 25syl 16 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  ( CC  _D  ( CC  X.  { ( exp `  x
) } ) )  =  ( CC  X.  { 0 } ) )
2724, 26eleqtrrd 2515 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  <. x ,  0 >.  e.  ( CC  _D  ( CC 
X.  { ( exp `  x ) } ) ) )
28 df-br 4288 . . . . . . . . . . . . . . 15  |-  ( x ( CC  _D  ( CC  X.  { ( exp `  x ) } ) ) 0  <->  <. x ,  0 >.  e.  ( CC  _D  ( CC  X.  { ( exp `  x
) } ) ) )
2927, 28sylibr 212 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  x
( CC  _D  ( CC  X.  { ( exp `  x ) } ) ) 0 )
30 eff 13359 . . . . . . . . . . . . . . . . . 18  |-  exp : CC
--> CC
3130a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  exp : CC --> CC )
32 eqid 2438 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  CC  |->  ( z  -  x ) )  =  ( z  e.  CC  |->  ( z  -  x ) )
3312, 32fmptd 5862 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( z  -  x ) ) : CC --> CC )
34 oveq1 6093 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  x  ->  (
z  -  x )  =  ( x  -  x ) )
35 ovex 6111 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  -  x )  e. 
_V
3634, 32, 35fvmpt 5769 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( z  -  x
) ) `  x
)  =  ( x  -  x ) )
37 subid 9620 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  (
x  -  x )  =  0 )
3836, 37eqtrd 2470 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( z  -  x
) ) `  x
)  =  0 )
39 dveflem 21431 . . . . . . . . . . . . . . . . . 18  |-  0
( CC  _D  exp ) 1
4038, 39syl6eqbr 4324 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( z  -  x
) ) `  x
) ( CC  _D  exp ) 1 )
4119elexi 2977 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  _V
4241snid 3900 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  { 1 }
43 opelxpi 4866 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  CC  /\  1  e.  { 1 } )  ->  <. x ,  1 >.  e.  ( CC  X.  { 1 } ) )
4442, 43mpan2 671 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  <. x ,  1 >.  e.  ( CC  X.  { 1 } ) )
45 cnelprrecn 9367 . . . . . . . . . . . . . . . . . . . . . 22  |-  CC  e.  { RR ,  CC }
4645a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  CC  ->  CC  e.  { RR ,  CC } )
47 simpr 461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  z  e.  CC )
4819a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  1  e.  CC )
4946dvmptid 21411 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  z ) )  =  ( z  e.  CC  |->  1 ) )
50 simpl 457 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  x  e.  CC )
5117a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  0  e.  CC )
52 id 22 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  CC  ->  x  e.  CC )
5346, 52dvmptc 21412 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  x ) )  =  ( z  e.  CC  |->  0 ) )
5446, 47, 48, 49, 50, 51, 53dvmptsub 21421 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) )  =  ( z  e.  CC  |->  ( 1  -  0 ) ) )
55 1m0e1 10424 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1  -  0 )  =  1
5655mpteq2i 4370 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  CC  |->  ( 1  -  0 ) )  =  ( z  e.  CC  |->  1 )
57 fconstmpt 4877 . . . . . . . . . . . . . . . . . . . . 21  |-  ( CC 
X.  { 1 } )  =  ( z  e.  CC  |->  1 )
5856, 57eqtr4i 2461 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  CC  |->  ( 1  -  0 ) )  =  ( CC  X.  { 1 } )
5954, 58syl6eq 2486 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) )  =  ( CC  X.  { 1 } ) )
6044, 59eleqtrrd 2515 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  <. x ,  1 >.  e.  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) ) )
61 df-br 4288 . . . . . . . . . . . . . . . . . 18  |-  ( x ( CC  _D  (
z  e.  CC  |->  ( z  -  x ) ) ) 1  <->  <. x ,  1 >.  e.  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) ) )
6260, 61sylibr 212 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  x
( CC  _D  (
z  e.  CC  |->  ( z  -  x ) ) ) 1 )
63 eqid 2438 . . . . . . . . . . . . . . . . 17  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
6431, 10, 33, 10, 10, 10, 20, 20, 40, 62, 63dvcobr 21400 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  x
( CC  _D  ( exp  o.  ( z  e.  CC  |->  ( z  -  x ) ) ) ) ( 1  x.  1 ) )
65 1t1e1 10461 . . . . . . . . . . . . . . . 16  |-  ( 1  x.  1 )  =  1
6664, 65syl6breq 4326 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  x
( CC  _D  ( exp  o.  ( z  e.  CC  |->  ( z  -  x ) ) ) ) 1 )
67 eqidd 2439 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( z  -  x ) )  =  ( z  e.  CC  |->  ( z  -  x ) ) )
6831feqmptd 5739 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  exp  =  ( y  e.  CC  |->  ( exp `  y
) ) )
69 fveq2 5686 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( z  -  x )  ->  ( exp `  y )  =  ( exp `  (
z  -  x ) ) )
7012, 67, 68, 69fmptco 5871 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  ( exp  o.  ( z  e.  CC  |->  ( z  -  x ) ) )  =  ( z  e.  CC  |->  ( exp `  (
z  -  x ) ) ) )
7170oveq2d 6102 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  ( CC  _D  ( exp  o.  ( z  e.  CC  |->  ( z  -  x
) ) ) )  =  ( CC  _D  ( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) ) )
7271breqd 4298 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  (
x ( CC  _D  ( exp  o.  ( z  e.  CC  |->  ( z  -  x ) ) ) ) 1  <->  x
( CC  _D  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) ) 1 ) )
7366, 72mpbid 210 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  x
( CC  _D  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) ) 1 )
748, 10, 16, 10, 10, 18, 20, 29, 73, 63dvmulbr 21393 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  x
( CC  _D  (
( CC  X.  {
( exp `  x
) } )  oF  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) ) ) ( ( 0  x.  ( ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) `  x ) )  +  ( 1  x.  (
( CC  X.  {
( exp `  x
) } ) `  x ) ) ) )
7516, 52ffvelrnd 5839 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x )  e.  CC )
7675mul02d 9559 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  (
0  x.  ( ( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x ) )  =  0 )
77 fvex 5696 . . . . . . . . . . . . . . . . . 18  |-  ( exp `  x )  e.  _V
7877fvconst2 5928 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
( CC  X.  {
( exp `  x
) } ) `  x )  =  ( exp `  x ) )
7978oveq2d 6102 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
1  x.  ( ( CC  X.  { ( exp `  x ) } ) `  x
) )  =  ( 1  x.  ( exp `  x ) ) )
803mulid2d 9396 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
1  x.  ( exp `  x ) )  =  ( exp `  x
) )
8179, 80eqtrd 2470 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  (
1  x.  ( ( CC  X.  { ( exp `  x ) } ) `  x
) )  =  ( exp `  x ) )
8276, 81oveq12d 6104 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  (
( 0  x.  (
( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x ) )  +  ( 1  x.  ( ( CC 
X.  { ( exp `  x ) } ) `
 x ) ) )  =  ( 0  +  ( exp `  x
) ) )
833addid2d 9562 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  (
0  +  ( exp `  x ) )  =  ( exp `  x
) )
8482, 83eqtrd 2470 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
( 0  x.  (
( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x ) )  +  ( 1  x.  ( ( CC 
X.  { ( exp `  x ) } ) `
 x ) ) )  =  ( exp `  x ) )
8574, 84breqtrd 4311 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  x
( CC  _D  (
( CC  X.  {
( exp `  x
) } )  oF  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) ) ) ( exp `  x
) )
86 cnex 9355 . . . . . . . . . . . . . . . . 17  |-  CC  e.  _V
8786a1i 11 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  CC  e.  _V )
8877a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  x
)  e.  _V )
89 fvex 5696 . . . . . . . . . . . . . . . . 17  |-  ( exp `  ( z  -  x
) )  e.  _V
9089a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
z  -  x ) )  e.  _V )
91 fconstmpt 4877 . . . . . . . . . . . . . . . . 17  |-  ( CC 
X.  { ( exp `  x ) } )  =  ( z  e.  CC  |->  ( exp `  x
) )
9291a1i 11 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  ( CC  X.  { ( exp `  x ) } )  =  ( z  e.  CC  |->  ( exp `  x
) ) )
93 eqidd 2439 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) )  =  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) )
9487, 88, 90, 92, 93offval2 6331 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  (
( CC  X.  {
( exp `  x
) } )  oF  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) )  =  ( z  e.  CC  |->  ( ( exp `  x )  x.  ( exp `  ( z  -  x ) ) ) ) )
9531feqmptd 5739 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  exp  =  ( z  e.  CC  |->  ( exp `  z
) ) )
96 efadd 13371 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  ( z  -  x
)  e.  CC )  ->  ( exp `  (
x  +  ( z  -  x ) ) )  =  ( ( exp `  x )  x.  ( exp `  (
z  -  x ) ) ) )
9750, 12, 96syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
x  +  ( z  -  x ) ) )  =  ( ( exp `  x )  x.  ( exp `  (
z  -  x ) ) ) )
98 pncan3 9610 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( x  +  ( z  -  x ) )  =  z )
9998fveq2d 5690 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
x  +  ( z  -  x ) ) )  =  ( exp `  z ) )
10097, 99eqtr3d 2472 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( ( exp `  x
)  x.  ( exp `  ( z  -  x
) ) )  =  ( exp `  z
) )
101100mpteq2dva 4373 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( ( exp `  x
)  x.  ( exp `  ( z  -  x
) ) ) )  =  ( z  e.  CC  |->  ( exp `  z
) ) )
10295, 101eqtr4d 2473 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  exp  =  ( z  e.  CC  |->  ( ( exp `  x )  x.  ( exp `  ( z  -  x ) ) ) ) )
10394, 102eqtr4d 2473 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  (
( CC  X.  {
( exp `  x
) } )  oF  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) )  =  exp )
104103oveq2d 6102 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  ( CC  _D  ( ( CC 
X.  { ( exp `  x ) } )  oF  x.  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) ) )  =  ( CC  _D  exp ) )
105104breqd 4298 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
x ( CC  _D  ( ( CC  X.  { ( exp `  x
) } )  oF  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) ) ) ( exp `  x
)  <->  x ( CC 
_D  exp ) ( exp `  x ) ) )
10685, 105mpbid 210 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  x
( CC  _D  exp ) ( exp `  x
) )
107 vex 2970 . . . . . . . . . . . 12  |-  x  e. 
_V
108107, 77breldm 5039 . . . . . . . . . . 11  |-  ( x ( CC  _D  exp ) ( exp `  x
)  ->  x  e.  dom  ( CC  _D  exp ) )
109106, 108syl 16 . . . . . . . . . 10  |-  ( x  e.  CC  ->  x  e.  dom  ( CC  _D  exp ) )
110109ssriv 3355 . . . . . . . . 9  |-  CC  C_  dom  ( CC  _D  exp )
1112, 110eqssi 3367 . . . . . . . 8  |-  dom  ( CC  _D  exp )  =  CC
112111feq2i 5547 . . . . . . 7  |-  ( ( CC  _D  exp ) : dom  ( CC  _D  exp ) --> CC  <->  ( CC  _D  exp ) : CC --> CC )
1131, 112mpbi 208 . . . . . 6  |-  ( CC 
_D  exp ) : CC --> CC
114113a1i 11 . . . . 5  |-  ( T. 
->  ( CC  _D  exp ) : CC --> CC )
115114feqmptd 5739 . . . 4  |-  ( T. 
->  ( CC  _D  exp )  =  ( x  e.  CC  |->  ( ( CC 
_D  exp ) `  x
) ) )
116 ffun 5556 . . . . . . 7  |-  ( ( CC  _D  exp ) : dom  ( CC  _D  exp ) --> CC  ->  Fun  ( CC  _D  exp )
)
1171, 116ax-mp 5 . . . . . 6  |-  Fun  ( CC  _D  exp )
118 funbrfv 5725 . . . . . 6  |-  ( Fun  ( CC  _D  exp )  ->  ( x ( CC  _D  exp )
( exp `  x
)  ->  ( ( CC  _D  exp ) `  x )  =  ( exp `  x ) ) )
119117, 106, 118mpsyl 63 . . . . 5  |-  ( x  e.  CC  ->  (
( CC  _D  exp ) `  x )  =  ( exp `  x
) )
120119mpteq2ia 4369 . . . 4  |-  ( x  e.  CC  |->  ( ( CC  _D  exp ) `  x ) )  =  ( x  e.  CC  |->  ( exp `  x ) )
121115, 120syl6eq 2486 . . 3  |-  ( T. 
->  ( CC  _D  exp )  =  ( x  e.  CC  |->  ( exp `  x
) ) )
12230a1i 11 . . . 4  |-  ( T. 
->  exp : CC --> CC )
123122feqmptd 5739 . . 3  |-  ( T. 
->  exp  =  ( x  e.  CC  |->  ( exp `  x ) ) )
124121, 123eqtr4d 2473 . 2  |-  ( T. 
->  ( CC  _D  exp )  =  exp )
125124trud 1378 1  |-  ( CC 
_D  exp )  =  exp
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1369   T. wtru 1370    e. wcel 1756   _Vcvv 2967    C_ wss 3323   {csn 3872   {cpr 3874   <.cop 3878   class class class wbr 4287    e. cmpt 4345    X. cxp 4833   dom cdm 4835    o. ccom 4839   Fun wfun 5407   -->wf 5409   ` cfv 5413  (class class class)co 6086    oFcof 6313   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    - cmin 9587   expce 13339   TopOpenctopn 14352  ℂfldccnfld 17798    _D cdv 21318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-seq 11799  df-exp 11858  df-fac 12044  df-bc 12071  df-hash 12096  df-shft 12548  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156  df-ef 13345  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17789  df-xmet 17790  df-met 17791  df-bl 17792  df-mopn 17793  df-fbas 17794  df-fg 17795  df-cnfld 17799  df-top 18483  df-bases 18485  df-topon 18486  df-topsp 18487  df-cld 18603  df-ntr 18604  df-cls 18605  df-nei 18682  df-lp 18720  df-perf 18721  df-cn 18811  df-cnp 18812  df-haus 18899  df-tx 19115  df-hmeo 19308  df-fil 19399  df-fm 19491  df-flim 19492  df-flf 19493  df-xms 19875  df-ms 19876  df-tms 19877  df-cncf 20434  df-limc 21321  df-dv 21322
This theorem is referenced by:  dvsincos  21433  efcn  21888  efcvx  21894  pige3  21959  dvrelog  22062  dvlog  22076  dvcxp1  22160  dvcxp2  22161  dvcncxp1  28448  dvsef  29577  expgrowthi  29578  expgrowth  29580
  Copyright terms: Public domain W3C validator