MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveel2 Structured version   Unicode version

Theorem dveel2 2163
Description: Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
dveel2  |-  ( -. 
A. x  x  =  y  ->  ( z  e.  y  ->  A. x  z  e.  y )
)
Distinct variable group:    x, z

Proof of Theorem dveel2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elequ2 1872 . 2  |-  ( w  =  y  ->  (
z  e.  w  <->  z  e.  y ) )
21dvelimv 2133 1  |-  ( -. 
A. x  x  =  y  ->  ( z  e.  y  ->  A. x  z  e.  y )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052
This theorem depends on definitions:  df-bi 188  df-an 372  df-ex 1660  df-nf 1664
This theorem is referenced by:  axc14  2164
  Copyright terms: Public domain W3C validator