MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsval2 Structured version   Unicode version

Theorem dvdsval2 14286
Description: One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
dvdsval2  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( N  /  M )  e.  ZZ ) )

Proof of Theorem dvdsval2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 divides 14285 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  E. k  e.  ZZ  (
k  x.  M )  =  N ) )
213adant2 1024 . 2  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  E. k  e.  ZZ  ( k  x.  M )  =  N ) )
3 zcn 10942 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
433ad2ant3 1028 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  N  e.  CC )
54adantr 466 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  N  e.  CC )
6 zcn 10942 . . . . . . . . . 10  |-  ( k  e.  ZZ  ->  k  e.  CC )
76adantl 467 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  k  e.  CC )
8 zcn 10942 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  CC )
983ad2ant1 1026 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  M  e.  CC )
109adantr 466 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  M  e.  CC )
11 simpl2 1009 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  M  =/=  0
)
125, 7, 10, 11divmul3d 10416 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  ( ( N  /  M )  =  k  <->  N  =  (
k  x.  M ) ) )
13 eqcom 2438 . . . . . . . 8  |-  ( N  =  ( k  x.  M )  <->  ( k  x.  M )  =  N )
1412, 13syl6bb 264 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  ( ( N  /  M )  =  k  <->  ( k  x.  M )  =  N ) )
1514biimprd 226 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  ( ( k  x.  M )  =  N  ->  ( N  /  M )  =  k ) )
1615impr 623 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( k  x.  M )  =  N ) )  -> 
( N  /  M
)  =  k )
17 simprl 762 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( k  x.  M )  =  N ) )  -> 
k  e.  ZZ )
1816, 17eqeltrd 2517 . . . 4  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( k  x.  M )  =  N ) )  -> 
( N  /  M
)  e.  ZZ )
1918rexlimdvaa 2925 . . 3  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( E. k  e.  ZZ  ( k  x.  M
)  =  N  -> 
( N  /  M
)  e.  ZZ ) )
20 simpr 462 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  ( N  /  M )  e.  ZZ )  ->  ( N  /  M )  e.  ZZ )
21 simp2 1006 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  M  =/=  0 )
224, 9, 21divcan1d 10383 . . . . . 6  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  (
( N  /  M
)  x.  M )  =  N )
2322adantr 466 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  ( N  /  M )  e.  ZZ )  ->  ( ( N  /  M )  x.  M )  =  N )
24 oveq1 6312 . . . . . . 7  |-  ( k  =  ( N  /  M )  ->  (
k  x.  M )  =  ( ( N  /  M )  x.  M ) )
2524eqeq1d 2431 . . . . . 6  |-  ( k  =  ( N  /  M )  ->  (
( k  x.  M
)  =  N  <->  ( ( N  /  M )  x.  M )  =  N ) )
2625rspcev 3188 . . . . 5  |-  ( ( ( N  /  M
)  e.  ZZ  /\  ( ( N  /  M )  x.  M
)  =  N )  ->  E. k  e.  ZZ  ( k  x.  M
)  =  N )
2720, 23, 26syl2anc 665 . . . 4  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  ( N  /  M )  e.  ZZ )  ->  E. k  e.  ZZ  ( k  x.  M
)  =  N )
2827ex 435 . . 3  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  (
( N  /  M
)  e.  ZZ  ->  E. k  e.  ZZ  (
k  x.  M )  =  N ) )
2919, 28impbid 193 . 2  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( E. k  e.  ZZ  ( k  x.  M
)  =  N  <->  ( N  /  M )  e.  ZZ ) )
302, 29bitrd 256 1  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( N  /  M )  e.  ZZ ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625   E.wrex 2783   class class class wbr 4426  (class class class)co 6305   CCcc 9536   0cc0 9538    x. cmul 9543    / cdiv 10268   ZZcz 10937    || cdvds 14283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-po 4775  df-so 4776  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-z 10938  df-dvds 14284
This theorem is referenced by:  dvdsval3  14287  nndivdvds  14289  fsumdvds  14326  3dvds  14347  bitsmod  14384  sadaddlem  14414  bitsuz  14422  mulgcd  14485  sqgcd  14497  lcmgcdlem  14542  prmind2  14606  isprm5  14622  divgcdodd  14624  mulgcddvds  14632  qredeu  14635  divnumden  14668  hashdvds  14692  oddprm  14728  pythagtriplem11  14738  pythagtriplem13  14740  pythagtriplem19  14746  pcprendvds2  14754  pcpremul  14756  pc2dvds  14791  pcz  14793  pcadd  14797  pcmptdvds  14802  fldivp1  14805  pockthlem  14812  prmreclem1  14823  prmreclem3  14825  4sqlem8  14852  4sqlem9  14853  4sqlem12  14863  4sqlem14OLD  14865  4sqlem14  14871  sylow1lem1  17185  sylow3lem4  17217  odadd1  17421  odadd2  17422  pgpfac1lem3  17645  prmirredlem  18995  znidomb  19063  root1eq1  23560  atantayl2  23729  efchtdvds  23949  dvdsdivcl  23973  muinv  23985  chtub  24003  bposlem6  24080  lgseisenlem1  24140  lgsquad2lem1  24149  lgsquad3  24152  m1lgs  24153  2sqlem3  24157  2sqlem8  24163  qqhval2lem  28624  nn0prpwlem  30763  congrep  35528  jm2.22  35555  jm2.23  35556  hashgcdlem  35772  proot1ex  35776  nzss  36302  etransclem9  37674  etransclem38  37703  etransclem44  37709  etransclem45  37710  divgcdoddALTV  38200  0dig2nn0o  39184
  Copyright terms: Public domain W3C validator