MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdstr Structured version   Unicode version

Theorem dvdstr 13564
Description: The divides relation is transitive. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdstr  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  M  ||  N )  ->  K  ||  N
) )

Proof of Theorem dvdstr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpa 985 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  M  e.  ZZ ) )
2 3simpc 987 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
3 3simpb 986 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  N  e.  ZZ ) )
4 zmulcl 10691 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
54adantl 466 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( x  x.  y )  e.  ZZ )
6 oveq2 6097 . . . . 5  |-  ( ( x  x.  K )  =  M  ->  (
y  x.  ( x  x.  K ) )  =  ( y  x.  M ) )
76adantr 465 . . . 4  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( y  x.  ( x  x.  K
) )  =  ( y  x.  M ) )
8 eqeq2 2450 . . . . 5  |-  ( ( y  x.  M )  =  N  ->  (
( y  x.  (
x  x.  K ) )  =  ( y  x.  M )  <->  ( y  x.  ( x  x.  K
) )  =  N ) )
98adantl 466 . . . 4  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( ( y  x.  ( x  x.  K ) )  =  ( y  x.  M
)  <->  ( y  x.  ( x  x.  K
) )  =  N ) )
107, 9mpbid 210 . . 3  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( y  x.  ( x  x.  K
) )  =  N )
11 zcn 10649 . . . . . . . 8  |-  ( x  e.  ZZ  ->  x  e.  CC )
12 zcn 10649 . . . . . . . 8  |-  ( y  e.  ZZ  ->  y  e.  CC )
13 zcn 10649 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  CC )
14 mulass 9368 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  K  e.  CC )  ->  (
( x  x.  y
)  x.  K )  =  ( x  x.  ( y  x.  K
) ) )
15 mul12 9533 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  K  e.  CC )  ->  (
x  x.  ( y  x.  K ) )  =  ( y  x.  ( x  x.  K
) ) )
1614, 15eqtrd 2473 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  K  e.  CC )  ->  (
( x  x.  y
)  x.  K )  =  ( y  x.  ( x  x.  K
) ) )
1711, 12, 13, 16syl3an 1260 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ  /\  K  e.  ZZ )  ->  (
( x  x.  y
)  x.  K )  =  ( y  x.  ( x  x.  K
) ) )
18173comr 1195 . . . . . 6  |-  ( ( K  e.  ZZ  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  x.  y
)  x.  K )  =  ( y  x.  ( x  x.  K
) ) )
19183expb 1188 . . . . 5  |-  ( ( K  e.  ZZ  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  y )  x.  K )  =  ( y  x.  (
x  x.  K ) ) )
20193ad2antl1 1150 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  y )  x.  K )  =  ( y  x.  (
x  x.  K ) ) )
2120eqeq1d 2449 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  y
)  x.  K )  =  N  <->  ( y  x.  ( x  x.  K
) )  =  N ) )
2210, 21syl5ibr 221 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( ( x  x.  y )  x.  K )  =  N ) )
231, 2, 3, 5, 22dvds2lem 13543 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  M  ||  N )  ->  K  ||  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4290  (class class class)co 6089   CCcc 9278    x. cmul 9285   ZZcz 10644    || cdivides 13533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-recs 6830  df-rdg 6864  df-er 7099  df-en 7309  df-dom 7310  df-sdom 7311  df-pnf 9418  df-mnf 9419  df-ltxr 9421  df-sub 9595  df-neg 9596  df-nn 10321  df-n0 10578  df-z 10645  df-dvds 13534
This theorem is referenced by:  dvdsmultr1  13565  dvdsmultr2  13566  bitsmod  13630  dvdsgcdb  13726  dvdsmulgcd  13736  mulgcddvds  13788  rpmulgcd2  13789  exprmfct  13794  isprm5  13796  rpexp  13804  rpdvds  13808  phimullem  13852  pcpremul  13908  pcdvdsb  13933  pcdvdstr  13940  pcprmpw2  13946  pockthlem  13964  prmreclem3  13977  4sqlem8  14004  odmulg  16055  ablfac1b  16569  ablfac1eu  16572  znunit  17994  wilth  22407  muval1  22469  dvdssqf  22474  sqff1o  22518  fsumdvdsdiaglem  22521  dvdsmulf1o  22532  vmasum  22553  bposlem3  22623  lgsmod  22658  lgsquad2lem1  22695  2sqlem3  22703  2sqlem8  22709  dvdspw  27554  dvdsacongtr  29324  jm2.20nn  29343  jm2.27a  29351  jm2.27c  29353
  Copyright terms: Public domain W3C validator