MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdssub2 Structured version   Unicode version

Theorem dvdssub2 13878
Description: If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
dvdssub2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  K  ||  ( M  -  N ) )  ->  ( K  ||  M 
<->  K  ||  N ) )

Proof of Theorem dvdssub2
StepHypRef Expression
1 zsubcl 10901 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  N
)  e.  ZZ )
213adant1 1014 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  N )  e.  ZZ )
3 dvds2sub 13873 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  ( M  -  N )  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  ( M  -  N ) )  ->  K  ||  ( M  -  ( M  -  N ) ) ) )
42, 3syld3an3 1273 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  ( M  -  N ) )  ->  K  ||  ( M  -  ( M  -  N ) ) ) )
54ancomsd 454 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  ( M  -  N )  /\  K  ||  M )  ->  K  ||  ( M  -  ( M  -  N ) ) ) )
65imp 429 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  ( M  -  N )  /\  K  ||  M ) )  ->  K  ||  ( M  -  ( M  -  N ) ) )
7 zcn 10865 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
8 zcn 10865 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
9 nncan 9844 . . . . . . 7  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M  -  ( M  -  N )
)  =  N )
107, 8, 9syl2an 477 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  ( M  -  N )
)  =  N )
11103adant1 1014 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  ( M  -  N ) )  =  N )
1211adantr 465 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  ( M  -  N )  /\  K  ||  M ) )  ->  ( M  -  ( M  -  N ) )  =  N )
136, 12breqtrd 4471 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  ( M  -  N )  /\  K  ||  M ) )  ->  K  ||  N
)
1413expr 615 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  K  ||  ( M  -  N ) )  ->  ( K  ||  M  ->  K  ||  N
) )
15 dvds2add 13872 . . . . . 6  |-  ( ( K  e.  ZZ  /\  ( M  -  N
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  ||  ( M  -  N
)  /\  K  ||  N
)  ->  K  ||  (
( M  -  N
)  +  N ) ) )
162, 15syld3an2 1275 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  ( M  -  N )  /\  K  ||  N )  ->  K  ||  (
( M  -  N
)  +  N ) ) )
1716imp 429 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  ( M  -  N )  /\  K  ||  N ) )  ->  K  ||  (
( M  -  N
)  +  N ) )
18 npcan 9825 . . . . . . 7  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( M  -  N )  +  N
)  =  M )
197, 8, 18syl2an 477 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  -  N )  +  N
)  =  M )
20193adant1 1014 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  -  N
)  +  N )  =  M )
2120adantr 465 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  ( M  -  N )  /\  K  ||  N ) )  ->  ( ( M  -  N )  +  N )  =  M )
2217, 21breqtrd 4471 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  ||  ( M  -  N )  /\  K  ||  N ) )  ->  K  ||  M
)
2322expr 615 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  K  ||  ( M  -  N ) )  ->  ( K  ||  N  ->  K  ||  M
) )
2414, 23impbid 191 1  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  K  ||  ( M  -  N ) )  ->  ( K  ||  M 
<->  K  ||  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   class class class wbr 4447  (class class class)co 6282   CCcc 9486    + caddc 9491    - cmin 9801   ZZcz 10860    || cdivides 13843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-recs 7039  df-rdg 7073  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-n0 10792  df-z 10861  df-dvds 13844
This theorem is referenced by:  dvdsadd  13879  3dvds  13905  bitsmod  13941  bitsinv1lem  13946  sylow2blem3  16438  znunit  18369  perfectlem1  23232  lgsqr  23349  2sqlem8  23375  jm2.20nn  30543
  Copyright terms: Public domain W3C validator