MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrzring Structured version   Unicode version

Theorem dvdsrzring 17899
Description: Ring divisibility in the ring of integers corresponds to ordinary divisibility in  ZZ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
Assertion
Ref Expression
dvdsrzring  |-  ||  =  ( ||r `
ring )

Proof of Theorem dvdsrzring
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 457 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  x  e.  ZZ )
21anim1i 568 . . . 4  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y )  ->  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) )
3 simpl 457 . . . . 5  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  ->  x  e.  ZZ )
4 zmulcl 10691 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  x  e.  ZZ )  ->  ( z  x.  x
)  e.  ZZ )
54ancoms 453 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( z  x.  x
)  e.  ZZ )
6 eleq1 2501 . . . . . . . 8  |-  ( ( z  x.  x )  =  y  ->  (
( z  x.  x
)  e.  ZZ  <->  y  e.  ZZ ) )
75, 6syl5ibcom 220 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( z  x.  x )  =  y  ->  y  e.  ZZ ) )
87rexlimdva 2839 . . . . . 6  |-  ( x  e.  ZZ  ->  ( E. z  e.  ZZ  ( z  x.  x
)  =  y  -> 
y  e.  ZZ ) )
98imp 429 . . . . 5  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  -> 
y  e.  ZZ )
10 simpr 461 . . . . 5  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  ->  E. z  e.  ZZ  ( z  x.  x
)  =  y )
113, 9, 10jca31 534 . . . 4  |-  ( ( x  e.  ZZ  /\  E. z  e.  ZZ  (
z  x.  x )  =  y )  -> 
( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  (
z  x.  x )  =  y ) )
122, 11impbii 188 . . 3  |-  ( ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y )  <->  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) )
1312opabbii 4354 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }  =  { <. x ,  y >.  |  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }
14 df-dvds 13534 . 2  |-  ||  =  { <. x ,  y
>.  |  ( (
x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x
)  =  y ) }
15 zringbas 17887 . . 3  |-  ZZ  =  ( Base ` ring )
16 eqid 2441 . . 3  |-  ( ||r ` ring )  =  ( ||r ` ring )
17 zringmulr 17890 . . 3  |-  x.  =  ( .r ` ring )
1815, 16, 17dvdsrval 16735 . 2  |-  ( ||r ` ring )  =  { <. x ,  y >.  |  ( x  e.  ZZ  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }
1913, 14, 183eqtr4i 2471 1  |-  ||  =  ( ||r `
ring )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2714   {copab 4347   ` cfv 5416  (class class class)co 6089    x. cmul 9285   ZZcz 10644    || cdivides 13533   ||rcdsr 16728  ℤringzring 17881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357  ax-mulf 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-1st 6575  df-2nd 6576  df-recs 6830  df-rdg 6864  df-1o 6918  df-oadd 6922  df-er 7099  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-nn 10321  df-2 10378  df-3 10379  df-4 10380  df-5 10381  df-6 10382  df-7 10383  df-8 10384  df-9 10385  df-10 10386  df-n0 10578  df-z 10645  df-dec 10754  df-uz 10860  df-fz 11436  df-dvds 13534  df-struct 14174  df-ndx 14175  df-slot 14176  df-base 14177  df-sets 14178  df-ress 14179  df-plusg 14249  df-mulr 14250  df-starv 14251  df-tset 14255  df-ple 14256  df-ds 14258  df-unif 14259  df-dvdsr 16731  df-cnfld 17817  df-zring 17882
This theorem is referenced by:  zringlpir  17904  zndvds  17980
  Copyright terms: Public domain W3C validator