MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrval Structured version   Visualization version   Unicode version

Theorem dvdsrval 17883
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
dvdsr.1  |-  B  =  ( Base `  R
)
dvdsr.2  |-  .||  =  (
||r `  R )
dvdsr.3  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
dvdsrval  |-  .||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }
Distinct variable groups:    x, y,  .||    x, z, B, y    x, R, y, z    x,  .x. , y, z
Allowed substitution hint:    .|| ( z)

Proof of Theorem dvdsrval
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 dvdsr.2 . . 3  |-  .||  =  (
||r `  R )
2 fveq2 5847 . . . . . . . . 9  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
3 dvdsr.1 . . . . . . . . 9  |-  B  =  ( Base `  R
)
42, 3syl6eqr 2503 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  r )  =  B )
54eleq2d 2514 . . . . . . 7  |-  ( r  =  R  ->  (
x  e.  ( Base `  r )  <->  x  e.  B ) )
64rexeqdv 2961 . . . . . . 7  |-  ( r  =  R  ->  ( E. z  e.  ( Base `  r ) ( z ( .r `  r ) x )  =  y  <->  E. z  e.  B  ( z
( .r `  r
) x )  =  y ) )
75, 6anbi12d 722 . . . . . 6  |-  ( r  =  R  ->  (
( x  e.  (
Base `  r )  /\  E. z  e.  (
Base `  r )
( z ( .r
`  r ) x )  =  y )  <-> 
( x  e.  B  /\  E. z  e.  B  ( z ( .r
`  r ) x )  =  y ) ) )
8 fveq2 5847 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
9 dvdsr.3 . . . . . . . . . . 11  |-  .x.  =  ( .r `  R )
108, 9syl6eqr 2503 . . . . . . . . . 10  |-  ( r  =  R  ->  ( .r `  r )  = 
.x.  )
1110oveqd 6292 . . . . . . . . 9  |-  ( r  =  R  ->  (
z ( .r `  r ) x )  =  ( z  .x.  x ) )
1211eqeq1d 2453 . . . . . . . 8  |-  ( r  =  R  ->  (
( z ( .r
`  r ) x )  =  y  <->  ( z  .x.  x )  =  y ) )
1312rexbidv 2872 . . . . . . 7  |-  ( r  =  R  ->  ( E. z  e.  B  ( z ( .r
`  r ) x )  =  y  <->  E. z  e.  B  ( z  .x.  x )  =  y ) )
1413anbi2d 715 . . . . . 6  |-  ( r  =  R  ->  (
( x  e.  B  /\  E. z  e.  B  ( z ( .r
`  r ) x )  =  y )  <-> 
( x  e.  B  /\  E. z  e.  B  ( z  .x.  x
)  =  y ) ) )
157, 14bitrd 261 . . . . 5  |-  ( r  =  R  ->  (
( x  e.  (
Base `  r )  /\  E. z  e.  (
Base `  r )
( z ( .r
`  r ) x )  =  y )  <-> 
( x  e.  B  /\  E. z  e.  B  ( z  .x.  x
)  =  y ) ) )
1615opabbidv 4437 . . . 4  |-  ( r  =  R  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  r )  /\  E. z  e.  ( Base `  r ) ( z ( .r `  r
) x )  =  y ) }  =  { <. x ,  y
>.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
17 df-dvdsr 17879 . . . 4  |-  ||r  =  (
r  e.  _V  |->  {
<. x ,  y >.  |  ( x  e.  ( Base `  r
)  /\  E. z  e.  ( Base `  r
) ( z ( .r `  r ) x )  =  y ) } )
18 fvex 5857 . . . . . 6  |-  ( Base `  R )  e.  _V
193, 18eqeltri 2525 . . . . 5  |-  B  e. 
_V
20 eqcom 2458 . . . . . . . . 9  |-  ( ( z  .x.  x )  =  y  <->  y  =  ( z  .x.  x
) )
2120rexbii 2861 . . . . . . . 8  |-  ( E. z  e.  B  ( z  .x.  x )  =  y  <->  E. z  e.  B  y  =  ( z  .x.  x
) )
2221abbii 2567 . . . . . . 7  |-  { y  |  E. z  e.  B  ( z  .x.  x )  =  y }  =  { y  |  E. z  e.  B  y  =  ( z  .x.  x ) }
2319abrexex 6754 . . . . . . 7  |-  { y  |  E. z  e.  B  y  =  ( z  .x.  x ) }  e.  _V
2422, 23eqeltri 2525 . . . . . 6  |-  { y  |  E. z  e.  B  ( z  .x.  x )  =  y }  e.  _V
2524a1i 11 . . . . 5  |-  ( x  e.  B  ->  { y  |  E. z  e.  B  ( z  .x.  x )  =  y }  e.  _V )
2619, 25opabex3 6759 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }  e.  _V
2716, 17, 26fvmpt 5931 . . 3  |-  ( R  e.  _V  ->  ( ||r `  R )  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
281, 27syl5eq 2497 . 2  |-  ( R  e.  _V  ->  .||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
29 fvprc 5841 . . . 4  |-  ( -.  R  e.  _V  ->  (
||r `  R )  =  (/) )
301, 29syl5eq 2497 . . 3  |-  ( -.  R  e.  _V  ->  .||  =  (/) )
31 opabn0 4704 . . . . 5  |-  ( {
<. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }  =/=  (/)  <->  E. x E. y ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) )
32 n0i 3703 . . . . . . . 8  |-  ( x  e.  B  ->  -.  B  =  (/) )
33 fvprc 5841 . . . . . . . . 9  |-  ( -.  R  e.  _V  ->  (
Base `  R )  =  (/) )
343, 33syl5eq 2497 . . . . . . . 8  |-  ( -.  R  e.  _V  ->  B  =  (/) )
3532, 34nsyl2 132 . . . . . . 7  |-  ( x  e.  B  ->  R  e.  _V )
3635adantr 471 . . . . . 6  |-  ( ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y )  ->  R  e.  _V )
3736exlimivv 1781 . . . . 5  |-  ( E. x E. y ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y )  ->  R  e.  _V )
3831, 37sylbi 200 . . . 4  |-  ( {
<. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }  =/=  (/)  ->  R  e.  _V )
3938necon1bi 2651 . . 3  |-  ( -.  R  e.  _V  ->  {
<. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }  =  (/) )
4030, 39eqtr4d 2488 . 2  |-  ( -.  R  e.  _V  ->  .||  =  { <. x ,  y
>.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) } )
4128, 40pm2.61i 169 1  |-  .||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 375    = wceq 1447   E.wex 1666    e. wcel 1890   {cab 2437    =/= wne 2621   E.wrex 2737   _Vcvv 3012   (/)c0 3698   {copab 4431   ` cfv 5560  (class class class)co 6275   Basecbs 15131   .rcmulr 15201   ||rcdsr 17876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1672  ax-4 1685  ax-5 1761  ax-6 1808  ax-7 1854  ax-8 1892  ax-9 1899  ax-10 1918  ax-11 1923  ax-12 1936  ax-13 2091  ax-ext 2431  ax-rep 4486  ax-sep 4496  ax-nul 4505  ax-pow 4553  ax-pr 4611  ax-un 6570
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 988  df-tru 1450  df-ex 1667  df-nf 1671  df-sb 1801  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 3014  df-sbc 3235  df-csb 3331  df-dif 3374  df-un 3376  df-in 3378  df-ss 3385  df-nul 3699  df-if 3849  df-pw 3920  df-sn 3936  df-pr 3938  df-op 3942  df-uni 4168  df-iun 4249  df-br 4374  df-opab 4433  df-mpt 4434  df-id 4726  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5524  df-fun 5562  df-fn 5563  df-f 5564  df-f1 5565  df-fo 5566  df-f1o 5567  df-fv 5568  df-ov 6278  df-dvdsr 17879
This theorem is referenced by:  dvdsr  17884  dvdsrpropd  17934  dvdsrzring  19062
  Copyright terms: Public domain W3C validator