MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrtr Structured version   Unicode version

Theorem dvdsrtr 16749
Description: Divisibility is transitive. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1  |-  B  =  ( Base `  R
)
dvdsr.2  |-  .||  =  (
||r `  R )
Assertion
Ref Expression
dvdsrtr  |-  ( ( R  e.  Ring  /\  Y  .|| 
Z  /\  Z  .||  X )  ->  Y  .||  X )

Proof of Theorem dvdsrtr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsr.1 . . . . . 6  |-  B  =  ( Base `  R
)
2 dvdsr.2 . . . . . 6  |-  .||  =  (
||r `  R )
3 eqid 2443 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
41, 2, 3dvdsr 16743 . . . . 5  |-  ( Y 
.||  Z  <->  ( Y  e.  B  /\  E. y  e.  B  ( y
( .r `  R
) Y )  =  Z ) )
51, 2, 3dvdsr 16743 . . . . 5  |-  ( Z 
.||  X  <->  ( Z  e.  B  /\  E. x  e.  B  ( x
( .r `  R
) Z )  =  X ) )
64, 5anbi12i 697 . . . 4  |-  ( ( Y  .||  Z  /\  Z  .||  X )  <->  ( ( Y  e.  B  /\  E. y  e.  B  ( y ( .r `  R ) Y )  =  Z )  /\  ( Z  e.  B  /\  E. x  e.  B  ( x ( .r
`  R ) Z )  =  X ) ) )
7 an4 820 . . . 4  |-  ( ( ( Y  e.  B  /\  E. y  e.  B  ( y ( .r
`  R ) Y )  =  Z )  /\  ( Z  e.  B  /\  E. x  e.  B  ( x
( .r `  R
) Z )  =  X ) )  <->  ( ( Y  e.  B  /\  Z  e.  B )  /\  ( E. y  e.  B  ( y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X ) ) )
86, 7bitri 249 . . 3  |-  ( ( Y  .||  Z  /\  Z  .||  X )  <->  ( ( Y  e.  B  /\  Z  e.  B )  /\  ( E. y  e.  B  ( y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X ) ) )
9 reeanv 2893 . . . . 5  |-  ( E. y  e.  B  E. x  e.  B  (
( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  <-> 
( E. y  e.  B  ( y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X ) )
10 simplrl 759 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  Y  e.  B )
11 simpll 753 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  R  e.  Ring )
12 simprr 756 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  x  e.  B )
13 simprl 755 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  y  e.  B )
141, 3rngcl 16663 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( .r `  R ) y )  e.  B )
1511, 12, 13, 14syl3anc 1218 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  ( x
( .r `  R
) y )  e.  B )
161, 2, 3dvdsrmul 16745 . . . . . . . . 9  |-  ( ( Y  e.  B  /\  ( x ( .r
`  R ) y )  e.  B )  ->  Y  .||  ( ( x ( .r `  R ) y ) ( .r `  R
) Y ) )
1710, 15, 16syl2anc 661 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  Y  .||  ( ( x ( .r `  R ) y ) ( .r `  R
) Y ) )
181, 3rngass 16666 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  Y  e.  B )
)  ->  ( (
x ( .r `  R ) y ) ( .r `  R
) Y )  =  ( x ( .r
`  R ) ( y ( .r `  R ) Y ) ) )
1911, 12, 13, 10, 18syl13anc 1220 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  ( (
x ( .r `  R ) y ) ( .r `  R
) Y )  =  ( x ( .r
`  R ) ( y ( .r `  R ) Y ) ) )
2017, 19breqtrd 4321 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  Y  .||  ( x ( .r `  R
) ( y ( .r `  R ) Y ) ) )
21 oveq2 6104 . . . . . . . . 9  |-  ( ( y ( .r `  R ) Y )  =  Z  ->  (
x ( .r `  R ) ( y ( .r `  R
) Y ) )  =  ( x ( .r `  R ) Z ) )
22 id 22 . . . . . . . . 9  |-  ( ( x ( .r `  R ) Z )  =  X  ->  (
x ( .r `  R ) Z )  =  X )
2321, 22sylan9eq 2495 . . . . . . . 8  |-  ( ( ( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  ( x ( .r `  R ) ( y ( .r
`  R ) Y ) )  =  X )
2423breq2d 4309 . . . . . . 7  |-  ( ( ( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  ( Y  .||  ( x ( .r
`  R ) ( y ( .r `  R ) Y ) )  <->  Y  .||  X ) )
2520, 24syl5ibcom 220 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  ( (
( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  Y  .||  X ) )
2625rexlimdvva 2853 . . . . 5  |-  ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B )
)  ->  ( E. y  e.  B  E. x  e.  B  (
( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  Y  .||  X ) )
279, 26syl5bir 218 . . . 4  |-  ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B )
)  ->  ( ( E. y  e.  B  ( y ( .r
`  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X )  ->  Y  .||  X ) )
2827expimpd 603 . . 3  |-  ( R  e.  Ring  ->  ( ( ( Y  e.  B  /\  Z  e.  B
)  /\  ( E. y  e.  B  (
y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  (
x ( .r `  R ) Z )  =  X ) )  ->  Y  .||  X ) )
298, 28syl5bi 217 . 2  |-  ( R  e.  Ring  ->  ( ( Y  .||  Z  /\  Z  .||  X )  ->  Y  .||  X ) )
30293impib 1185 1  |-  ( ( R  e.  Ring  /\  Y  .|| 
Z  /\  Z  .||  X )  ->  Y  .||  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E.wrex 2721   class class class wbr 4297   ` cfv 5423  (class class class)co 6096   Basecbs 14179   .rcmulr 14244   Ringcrg 16650   ||rcdsr 16735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-recs 6837  df-rdg 6871  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-2 10385  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-plusg 14256  df-mnd 15420  df-mgp 16597  df-rng 16652  df-dvdsr 16738
This theorem is referenced by:  dvdsunit  16760  unitmulcl  16761  unitnegcl  16778
  Copyright terms: Public domain W3C validator