MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrmul1 Structured version   Unicode version

Theorem dvdsrmul1 16735
Description: The divisibility relation is preserved under right-multiplication. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1  |-  B  =  ( Base `  R
)
dvdsr.2  |-  .||  =  (
||r `  R )
dvdsrmul1.3  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
dvdsrmul1  |-  ( ( R  e.  Ring  /\  Z  e.  B  /\  X  .||  Y )  ->  ( X  .x.  Z )  .||  ( Y  .x.  Z ) )

Proof of Theorem dvdsrmul1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dvdsr.1 . . . 4  |-  B  =  ( Base `  R
)
2 dvdsr.2 . . . 4  |-  .||  =  (
||r `  R )
3 dvdsrmul1.3 . . . 4  |-  .x.  =  ( .r `  R )
41, 2, 3dvdsr 16728 . . 3  |-  ( X 
.||  Y  <->  ( X  e.  B  /\  E. x  e.  B  ( x  .x.  X )  =  Y ) )
5 simplll 757 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  R  e.  Ring )
6 simplr 754 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  X  e.  B )
7 simpllr 758 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  Z  e.  B )
81, 3rngcl 16648 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .x.  Z )  e.  B )
95, 6, 7, 8syl3anc 1218 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  ( X  .x.  Z )  e.  B )
101, 2, 3dvdsrmul 16730 . . . . . . . 8  |-  ( ( ( X  .x.  Z
)  e.  B  /\  x  e.  B )  ->  ( X  .x.  Z
)  .||  ( x  .x.  ( X  .x.  Z ) ) )
119, 10sylancom 667 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  ( X  .x.  Z )  .||  ( x  .x.  ( X 
.x.  Z ) ) )
12 simpr 461 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  x  e.  B )
131, 3rngass 16651 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  X  e.  B  /\  Z  e.  B )
)  ->  ( (
x  .x.  X )  .x.  Z )  =  ( x  .x.  ( X 
.x.  Z ) ) )
145, 12, 6, 7, 13syl13anc 1220 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  (
( x  .x.  X
)  .x.  Z )  =  ( x  .x.  ( X  .x.  Z ) ) )
1511, 14breqtrrd 4313 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  ( X  .x.  Z )  .||  ( ( x  .x.  X )  .x.  Z
) )
16 oveq1 6093 . . . . . . 7  |-  ( ( x  .x.  X )  =  Y  ->  (
( x  .x.  X
)  .x.  Z )  =  ( Y  .x.  Z ) )
1716breq2d 4299 . . . . . 6  |-  ( ( x  .x.  X )  =  Y  ->  (
( X  .x.  Z
)  .||  ( ( x 
.x.  X )  .x.  Z )  <->  ( X  .x.  Z )  .||  ( Y 
.x.  Z ) ) )
1815, 17syl5ibcom 220 . . . . 5  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  (
( x  .x.  X
)  =  Y  -> 
( X  .x.  Z
)  .||  ( Y  .x.  Z ) ) )
1918rexlimdva 2836 . . . 4  |-  ( ( ( R  e.  Ring  /\  Z  e.  B )  /\  X  e.  B
)  ->  ( E. x  e.  B  (
x  .x.  X )  =  Y  ->  ( X 
.x.  Z )  .||  ( Y  .x.  Z ) ) )
2019expimpd 603 . . 3  |-  ( ( R  e.  Ring  /\  Z  e.  B )  ->  (
( X  e.  B  /\  E. x  e.  B  ( x  .x.  X )  =  Y )  -> 
( X  .x.  Z
)  .||  ( Y  .x.  Z ) ) )
214, 20syl5bi 217 . 2  |-  ( ( R  e.  Ring  /\  Z  e.  B )  ->  ( X  .||  Y  ->  ( X  .x.  Z )  .||  ( Y  .x.  Z ) ) )
22213impia 1184 1  |-  ( ( R  e.  Ring  /\  Z  e.  B  /\  X  .||  Y )  ->  ( X  .x.  Z )  .||  ( Y  .x.  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E.wrex 2711   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   Basecbs 14166   .rcmulr 14231   Ringcrg 16635   ||rcdsr 16720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-2 10372  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-plusg 14243  df-mnd 15407  df-mgp 16582  df-rng 16637  df-dvdsr 16723
This theorem is referenced by:  unitmulcl  16746
  Copyright terms: Public domain W3C validator