MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrmul1 Structured version   Unicode version

Theorem dvdsrmul1 17415
Description: The divisibility relation is preserved under right-multiplication. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1  |-  B  =  ( Base `  R
)
dvdsr.2  |-  .||  =  (
||r `  R )
dvdsrmul1.3  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
dvdsrmul1  |-  ( ( R  e.  Ring  /\  Z  e.  B  /\  X  .||  Y )  ->  ( X  .x.  Z )  .||  ( Y  .x.  Z ) )

Proof of Theorem dvdsrmul1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dvdsr.1 . . . 4  |-  B  =  ( Base `  R
)
2 dvdsr.2 . . . 4  |-  .||  =  (
||r `  R )
3 dvdsrmul1.3 . . . 4  |-  .x.  =  ( .r `  R )
41, 2, 3dvdsr 17408 . . 3  |-  ( X 
.||  Y  <->  ( X  e.  B  /\  E. x  e.  B  ( x  .x.  X )  =  Y ) )
5 simplll 757 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  R  e.  Ring )
6 simplr 753 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  X  e.  B )
7 simpllr 758 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  Z  e.  B )
81, 3ringcl 17325 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .x.  Z )  e.  B )
95, 6, 7, 8syl3anc 1226 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  ( X  .x.  Z )  e.  B )
101, 2, 3dvdsrmul 17410 . . . . . . . 8  |-  ( ( ( X  .x.  Z
)  e.  B  /\  x  e.  B )  ->  ( X  .x.  Z
)  .||  ( x  .x.  ( X  .x.  Z ) ) )
119, 10sylancom 665 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  ( X  .x.  Z )  .||  ( x  .x.  ( X 
.x.  Z ) ) )
12 simpr 459 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  x  e.  B )
131, 3ringass 17328 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  X  e.  B  /\  Z  e.  B )
)  ->  ( (
x  .x.  X )  .x.  Z )  =  ( x  .x.  ( X 
.x.  Z ) ) )
145, 12, 6, 7, 13syl13anc 1228 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  (
( x  .x.  X
)  .x.  Z )  =  ( x  .x.  ( X  .x.  Z ) ) )
1511, 14breqtrrd 4393 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  ( X  .x.  Z )  .||  ( ( x  .x.  X )  .x.  Z
) )
16 oveq1 6203 . . . . . . 7  |-  ( ( x  .x.  X )  =  Y  ->  (
( x  .x.  X
)  .x.  Z )  =  ( Y  .x.  Z ) )
1716breq2d 4379 . . . . . 6  |-  ( ( x  .x.  X )  =  Y  ->  (
( X  .x.  Z
)  .||  ( ( x 
.x.  X )  .x.  Z )  <->  ( X  .x.  Z )  .||  ( Y 
.x.  Z ) ) )
1815, 17syl5ibcom 220 . . . . 5  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  (
( x  .x.  X
)  =  Y  -> 
( X  .x.  Z
)  .||  ( Y  .x.  Z ) ) )
1918rexlimdva 2874 . . . 4  |-  ( ( ( R  e.  Ring  /\  Z  e.  B )  /\  X  e.  B
)  ->  ( E. x  e.  B  (
x  .x.  X )  =  Y  ->  ( X 
.x.  Z )  .||  ( Y  .x.  Z ) ) )
2019expimpd 601 . . 3  |-  ( ( R  e.  Ring  /\  Z  e.  B )  ->  (
( X  e.  B  /\  E. x  e.  B  ( x  .x.  X )  =  Y )  -> 
( X  .x.  Z
)  .||  ( Y  .x.  Z ) ) )
214, 20syl5bi 217 . 2  |-  ( ( R  e.  Ring  /\  Z  e.  B )  ->  ( X  .||  Y  ->  ( X  .x.  Z )  .||  ( Y  .x.  Z ) ) )
22213impia 1191 1  |-  ( ( R  e.  Ring  /\  Z  e.  B  /\  X  .||  Y )  ->  ( X  .x.  Z )  .||  ( Y  .x.  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826   E.wrex 2733   class class class wbr 4367   ` cfv 5496  (class class class)co 6196   Basecbs 14634   .rcmulr 14703   Ringcrg 17311   ||rcdsr 17400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-recs 6960  df-rdg 6994  df-er 7229  df-en 7436  df-dom 7437  df-sdom 7438  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-nn 10453  df-2 10511  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-plusg 14715  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-mgp 17255  df-ring 17313  df-dvdsr 17403
This theorem is referenced by:  unitmulcl  17426
  Copyright terms: Public domain W3C validator