MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrmul Structured version   Unicode version

Theorem dvdsrmul 16743
Description: A left-multiple of  X is divisible by  X. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1  |-  B  =  ( Base `  R
)
dvdsr.2  |-  .||  =  (
||r `  R )
dvdsr.3  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
dvdsrmul  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  X  .||  ( Y  .x.  X ) )

Proof of Theorem dvdsrmul
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpl 457 . 2  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
2 simpr 461 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
3 eqid 2443 . . 3  |-  ( Y 
.x.  X )  =  ( Y  .x.  X
)
4 oveq1 6101 . . . . 5  |-  ( z  =  Y  ->  (
z  .x.  X )  =  ( Y  .x.  X ) )
54eqeq1d 2451 . . . 4  |-  ( z  =  Y  ->  (
( z  .x.  X
)  =  ( Y 
.x.  X )  <->  ( Y  .x.  X )  =  ( Y  .x.  X ) ) )
65rspcev 3076 . . 3  |-  ( ( Y  e.  B  /\  ( Y  .x.  X )  =  ( Y  .x.  X ) )  ->  E. z  e.  B  ( z  .x.  X
)  =  ( Y 
.x.  X ) )
72, 3, 6sylancl 662 . 2  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  E. z  e.  B  ( z  .x.  X
)  =  ( Y 
.x.  X ) )
8 dvdsr.1 . . 3  |-  B  =  ( Base `  R
)
9 dvdsr.2 . . 3  |-  .||  =  (
||r `  R )
10 dvdsr.3 . . 3  |-  .x.  =  ( .r `  R )
118, 9, 10dvdsr 16741 . 2  |-  ( X 
.||  ( Y  .x.  X )  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  ( Y  .x.  X ) ) )
121, 7, 11sylanbrc 664 1  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  X  .||  ( Y  .x.  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2719   class class class wbr 4295   ` cfv 5421  (class class class)co 6094   Basecbs 14177   .rcmulr 14242   ||rcdsr 16733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-ral 2723  df-rex 2724  df-reu 2725  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-op 3887  df-uni 4095  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-id 4639  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6097  df-dvdsr 16736
This theorem is referenced by:  dvdsrid  16746  dvdsrtr  16747  dvdsrmul1  16748  dvdsrneg  16749  unitmulclb  16760  unitgrp  16762  isdrng2  16845  subrguss  16883  subrgunit  16886  fidomndrnglem  17381  invrvald  18485  dvdsq1p  21635
  Copyright terms: Public domain W3C validator