MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsr Structured version   Unicode version

Theorem dvdsr 16864
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1  |-  B  =  ( Base `  R
)
dvdsr.2  |-  .||  =  (
||r `  R )
dvdsr.3  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
dvdsr  |-  ( X 
.||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) )
Distinct variable groups:    z, B    z, X    z, Y    z, R    z,  .x.
Allowed substitution hint:    .|| ( z)

Proof of Theorem dvdsr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsr.2 . . . 4  |-  .||  =  (
||r `  R )
21reldvdsr 16862 . . 3  |-  Rel  .||
3 brrelex12 4987 . . 3  |-  ( ( Rel  .||  /\  X  .||  Y )  ->  ( X  e.  _V  /\  Y  e.  _V ) )
42, 3mpan 670 . 2  |-  ( X 
.||  Y  ->  ( X  e.  _V  /\  Y  e.  _V ) )
5 elex 3087 . . 3  |-  ( X  e.  B  ->  X  e.  _V )
6 id 22 . . . . 5  |-  ( ( z  .x.  X )  =  Y  ->  (
z  .x.  X )  =  Y )
7 ovex 6228 . . . . 5  |-  ( z 
.x.  X )  e. 
_V
86, 7syl6eqelr 2551 . . . 4  |-  ( ( z  .x.  X )  =  Y  ->  Y  e.  _V )
98rexlimivw 2943 . . 3  |-  ( E. z  e.  B  ( z  .x.  X )  =  Y  ->  Y  e.  _V )
105, 9anim12i 566 . 2  |-  ( ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y )  -> 
( X  e.  _V  /\  Y  e.  _V )
)
11 simpl 457 . . . . 5  |-  ( ( x  =  X  /\  y  =  Y )  ->  x  =  X )
1211eleq1d 2523 . . . 4  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( x  e.  B  <->  X  e.  B ) )
1311oveq2d 6219 . . . . . 6  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( z  .x.  x
)  =  ( z 
.x.  X ) )
14 simpr 461 . . . . . 6  |-  ( ( x  =  X  /\  y  =  Y )  ->  y  =  Y )
1513, 14eqeq12d 2476 . . . . 5  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ( z  .x.  x )  =  y  <-> 
( z  .x.  X
)  =  Y ) )
1615rexbidv 2868 . . . 4  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( E. z  e.  B  ( z  .x.  x )  =  y  <->  E. z  e.  B  ( z  .x.  X
)  =  Y ) )
1712, 16anbi12d 710 . . 3  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y )  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
18 dvdsr.1 . . . 4  |-  B  =  ( Base `  R
)
19 dvdsr.3 . . . 4  |-  .x.  =  ( .r `  R )
2018, 1, 19dvdsrval 16863 . . 3  |-  .||  =  { <. x ,  y >.  |  ( x  e.  B  /\  E. z  e.  B  ( z  .x.  x )  =  y ) }
2117, 20brabga 4714 . 2  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( X  .||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) ) )
224, 10, 21pm5.21nii 353 1  |-  ( X 
.||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   E.wrex 2800   _Vcvv 3078   class class class wbr 4403   Rel wrel 4956   ` cfv 5529  (class class class)co 6203   Basecbs 14295   .rcmulr 14361   ||rcdsr 16856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-dvdsr 16859
This theorem is referenced by:  dvdsr2  16865  dvdsrmul  16866  dvdsrcl  16867  dvdsrcl2  16868  dvdsrtr  16870  dvdsrmul1  16871  opprunit  16879  crngunit  16880  subrgdvds  17005  rhmdvdsr  26451
  Copyright terms: Public domain W3C validator