MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsq1p Structured version   Unicode version

Theorem dvdsq1p 22727
Description: Divisibility in a polynomial ring is witnessed by the quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
dvdsq1p.p  |-  P  =  (Poly1 `  R )
dvdsq1p.d  |-  .||  =  (
||r `  P )
dvdsq1p.b  |-  B  =  ( Base `  P
)
dvdsq1p.c  |-  C  =  (Unic1p `  R )
dvdsq1p.t  |-  .x.  =  ( .r `  P )
dvdsq1p.q  |-  Q  =  (quot1p `  R )
Assertion
Ref Expression
dvdsq1p  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  ->  ( G  .||  F  <->  F  =  ( ( F Q G )  .x.  G
) ) )

Proof of Theorem dvdsq1p
Dummy variable  q is distinct from all other variables.
StepHypRef Expression
1 dvdsq1p.p . . . . . 6  |-  P  =  (Poly1 `  R )
2 dvdsq1p.b . . . . . 6  |-  B  =  ( Base `  P
)
3 dvdsq1p.c . . . . . 6  |-  C  =  (Unic1p `  R )
41, 2, 3uc1pcl 22710 . . . . 5  |-  ( G  e.  C  ->  G  e.  B )
543ad2ant3 1017 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  ->  G  e.  B )
6 dvdsq1p.d . . . . 5  |-  .||  =  (
||r `  P )
7 dvdsq1p.t . . . . 5  |-  .x.  =  ( .r `  P )
82, 6, 7dvdsr2 17491 . . . 4  |-  ( G  e.  B  ->  ( G  .||  F  <->  E. q  e.  B  ( q  .x.  G )  =  F ) )
95, 8syl 16 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  ->  ( G  .||  F  <->  E. q  e.  B  ( q  .x.  G )  =  F ) )
10 eqcom 2463 . . . . 5  |-  ( ( q  .x.  G )  =  F  <->  F  =  ( q  .x.  G
) )
11 simprr 755 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  ( q  e.  B  /\  F  =  (
q  .x.  G )
) )  ->  F  =  ( q  .x.  G ) )
12 simprl 754 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  ( q  e.  B  /\  F  =  (
q  .x.  G )
) )  ->  q  e.  B )
13 simpl1 997 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  q  e.  B
)  ->  R  e.  Ring )
141ply1ring 18484 . . . . . . . . . . . . . . . . 17  |-  ( R  e.  Ring  ->  P  e. 
Ring )
1513, 14syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  q  e.  B
)  ->  P  e.  Ring )
16 ringgrp 17398 . . . . . . . . . . . . . . . 16  |-  ( P  e.  Ring  ->  P  e. 
Grp )
1715, 16syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  q  e.  B
)  ->  P  e.  Grp )
18 simpl2 998 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  q  e.  B
)  ->  F  e.  B )
19 simpr 459 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  q  e.  B
)  ->  q  e.  B )
205adantr 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  q  e.  B
)  ->  G  e.  B )
212, 7ringcl 17407 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Ring  /\  q  e.  B  /\  G  e.  B )  ->  (
q  .x.  G )  e.  B )
2215, 19, 20, 21syl3anc 1226 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  q  e.  B
)  ->  ( q  .x.  G )  e.  B
)
23 eqid 2454 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  P )  =  ( 0g `  P
)
24 eqid 2454 . . . . . . . . . . . . . . . 16  |-  ( -g `  P )  =  (
-g `  P )
252, 23, 24grpsubeq0 16323 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Grp  /\  F  e.  B  /\  ( q  .x.  G
)  e.  B )  ->  ( ( F ( -g `  P
) ( q  .x.  G ) )  =  ( 0g `  P
)  <->  F  =  (
q  .x.  G )
) )
2617, 18, 22, 25syl3anc 1226 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  q  e.  B
)  ->  ( ( F ( -g `  P
) ( q  .x.  G ) )  =  ( 0g `  P
)  <->  F  =  (
q  .x.  G )
) )
2726biimprd 223 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  q  e.  B
)  ->  ( F  =  ( q  .x.  G )  ->  ( F ( -g `  P
) ( q  .x.  G ) )  =  ( 0g `  P
) ) )
2827impr 617 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  ( q  e.  B  /\  F  =  (
q  .x.  G )
) )  ->  ( F ( -g `  P
) ( q  .x.  G ) )  =  ( 0g `  P
) )
2928fveq2d 5852 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  ( q  e.  B  /\  F  =  (
q  .x.  G )
) )  ->  (
( deg1  `
 R ) `  ( F ( -g `  P
) ( q  .x.  G ) ) )  =  ( ( deg1  `  R
) `  ( 0g `  P ) ) )
30 simpl1 997 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  ( q  e.  B  /\  F  =  (
q  .x.  G )
) )  ->  R  e.  Ring )
31 eqid 2454 . . . . . . . . . . . . 13  |-  ( deg1  `  R
)  =  ( deg1  `  R
)
3231, 1, 23deg1z 22653 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  ( ( deg1  `  R ) `  ( 0g `  P ) )  = -oo )
3330, 32syl 16 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  ( q  e.  B  /\  F  =  (
q  .x.  G )
) )  ->  (
( deg1  `
 R ) `  ( 0g `  P ) )  = -oo )
3429, 33eqtrd 2495 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  ( q  e.  B  /\  F  =  (
q  .x.  G )
) )  ->  (
( deg1  `
 R ) `  ( F ( -g `  P
) ( q  .x.  G ) ) )  = -oo )
3531, 3uc1pdeg 22714 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Ring  /\  G  e.  C )  ->  (
( deg1  `
 R ) `  G )  e.  NN0 )
36353adant2 1013 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  ->  (
( deg1  `
 R ) `  G )  e.  NN0 )
3736nn0red 10849 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  ->  (
( deg1  `
 R ) `  G )  e.  RR )
3837adantr 463 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  ( q  e.  B  /\  F  =  (
q  .x.  G )
) )  ->  (
( deg1  `
 R ) `  G )  e.  RR )
39 mnflt 11336 . . . . . . . . . . 11  |-  ( ( ( deg1  `  R ) `  G )  e.  RR  -> -oo  <  ( ( deg1  `  R ) `  G
) )
4038, 39syl 16 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  ( q  e.  B  /\  F  =  (
q  .x.  G )
) )  -> -oo  <  ( ( deg1  `  R ) `  G ) )
4134, 40eqbrtrd 4459 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  ( q  e.  B  /\  F  =  (
q  .x.  G )
) )  ->  (
( deg1  `
 R ) `  ( F ( -g `  P
) ( q  .x.  G ) ) )  <  ( ( deg1  `  R
) `  G )
)
42 dvdsq1p.q . . . . . . . . . . 11  |-  Q  =  (quot1p `  R )
4342, 1, 2, 31, 24, 7, 3q1peqb 22721 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  ->  (
( q  e.  B  /\  ( ( deg1  `  R ) `  ( F ( -g `  P ) ( q 
.x.  G ) ) )  <  ( ( deg1  `  R ) `  G
) )  <->  ( F Q G )  =  q ) )
4443adantr 463 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  ( q  e.  B  /\  F  =  (
q  .x.  G )
) )  ->  (
( q  e.  B  /\  ( ( deg1  `  R ) `  ( F ( -g `  P ) ( q 
.x.  G ) ) )  <  ( ( deg1  `  R ) `  G
) )  <->  ( F Q G )  =  q ) )
4512, 41, 44mpbi2and 919 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  ( q  e.  B  /\  F  =  (
q  .x.  G )
) )  ->  ( F Q G )  =  q )
4645oveq1d 6285 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  ( q  e.  B  /\  F  =  (
q  .x.  G )
) )  ->  (
( F Q G )  .x.  G )  =  ( q  .x.  G ) )
4711, 46eqtr4d 2498 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  ( q  e.  B  /\  F  =  (
q  .x.  G )
) )  ->  F  =  ( ( F Q G )  .x.  G ) )
4847expr 613 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  q  e.  B
)  ->  ( F  =  ( q  .x.  G )  ->  F  =  ( ( F Q G )  .x.  G ) ) )
4910, 48syl5bi 217 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  /\  q  e.  B
)  ->  ( (
q  .x.  G )  =  F  ->  F  =  ( ( F Q G )  .x.  G
) ) )
5049rexlimdva 2946 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  ->  ( E. q  e.  B  ( q  .x.  G
)  =  F  ->  F  =  ( ( F Q G )  .x.  G ) ) )
519, 50sylbid 215 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  ->  ( G  .||  F  ->  F  =  ( ( F Q G )  .x.  G ) ) )
5242, 1, 2, 3q1pcl 22722 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  ->  ( F Q G )  e.  B )
532, 6, 7dvdsrmul 17492 . . . 4  |-  ( ( G  e.  B  /\  ( F Q G )  e.  B )  ->  G  .||  ( ( F Q G )  .x.  G ) )
545, 52, 53syl2anc 659 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  ->  G  .||  ( ( F Q G )  .x.  G
) )
55 breq2 4443 . . 3  |-  ( F  =  ( ( F Q G )  .x.  G )  ->  ( G  .||  F  <->  G  .||  ( ( F Q G ) 
.x.  G ) ) )
5654, 55syl5ibrcom 222 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  ->  ( F  =  ( ( F Q G )  .x.  G )  ->  G  .|| 
F ) )
5751, 56impbid 191 1  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  C )  ->  ( G  .||  F  <->  F  =  ( ( F Q G )  .x.  G
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   E.wrex 2805   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   RRcr 9480   -oocmnf 9615    < clt 9617   NN0cn0 10791   Basecbs 14716   .rcmulr 14785   0gc0g 14929   Grpcgrp 16252   -gcsg 16254   Ringcrg 17393   ||rcdsr 17482  Poly1cpl1 18411   deg1 cdg1 22618  Unic1pcuc1p 22693  quot1pcq1p 22694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-ofr 6514  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-tpos 6947  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-sup 7893  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-fz 11676  df-fzo 11800  df-seq 12090  df-hash 12388  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-starv 14799  df-sca 14800  df-vsca 14801  df-tset 14803  df-ple 14804  df-ds 14806  df-unif 14807  df-0g 14931  df-gsum 14932  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-mhm 16165  df-submnd 16166  df-grp 16256  df-minusg 16257  df-sbg 16258  df-mulg 16259  df-subg 16397  df-ghm 16464  df-cntz 16554  df-cmn 16999  df-abl 17000  df-mgp 17337  df-ur 17349  df-ring 17395  df-cring 17396  df-oppr 17467  df-dvdsr 17485  df-unit 17486  df-invr 17516  df-subrg 17622  df-lmod 17709  df-lss 17774  df-rlreg 18126  df-psr 18200  df-mvr 18201  df-mpl 18202  df-opsr 18204  df-psr1 18414  df-vr1 18415  df-ply1 18416  df-coe1 18417  df-cnfld 18616  df-mdeg 22619  df-deg1 22620  df-uc1p 22698  df-q1p 22699
This theorem is referenced by:  dvdsr1p  22728  fta1glem1  22732  fta1glem2  22733
  Copyright terms: Public domain W3C validator