MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmulgcd Structured version   Unicode version

Theorem dvdsmulgcd 13730
Description: A divisibility equivalent for odmulg 16048. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
dvdsmulgcd  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  ||  ( B  x.  C )  <->  A 
||  ( B  x.  ( C  gcd  A ) ) ) )

Proof of Theorem dvdsmulgcd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 754 . . . 4  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C )
)  ->  C  e.  ZZ )
2 dvdszrcl 13532 . . . . . 6  |-  ( A 
||  ( B  x.  C )  ->  ( A  e.  ZZ  /\  ( B  x.  C )  e.  ZZ ) )
32adantl 466 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C )
)  ->  ( A  e.  ZZ  /\  ( B  x.  C )  e.  ZZ ) )
43simpld 459 . . . 4  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C )
)  ->  A  e.  ZZ )
5 bezout 13718 . . . 4  |-  ( ( C  e.  ZZ  /\  A  e.  ZZ )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( C  gcd  A )  =  ( ( C  x.  x )  +  ( A  x.  y ) ) )
61, 4, 5syl2anc 661 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C )
)  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( C  gcd  A )  =  ( ( C  x.  x )  +  ( A  x.  y ) ) )
74adantr 465 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  e.  ZZ )
8 simplll 757 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  B  e.  ZZ )
9 simpllr 758 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  C  e.  ZZ )
10 simprl 755 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  ZZ )
119, 10zmulcld 10745 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( C  x.  x )  e.  ZZ )
128, 11zmulcld 10745 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( B  x.  ( C  x.  x
) )  e.  ZZ )
13 simprr 756 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  ZZ )
147, 13zmulcld 10745 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( A  x.  y )  e.  ZZ )
158, 14zmulcld 10745 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( B  x.  ( A  x.  y
) )  e.  ZZ )
16 simplr 754 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  ( B  x.  C )
)
178, 9zmulcld 10745 . . . . . . . . . 10  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( B  x.  C )  e.  ZZ )
18 dvdsmultr1 13559 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( B  x.  C
)  e.  ZZ  /\  x  e.  ZZ )  ->  ( A  ||  ( B  x.  C )  ->  A  ||  ( ( B  x.  C )  x.  x ) ) )
197, 17, 10, 18syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( A  ||  ( B  x.  C
)  ->  A  ||  (
( B  x.  C
)  x.  x ) ) )
2016, 19mpd 15 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  (
( B  x.  C
)  x.  x ) )
218zcnd 10740 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  B  e.  CC )
229zcnd 10740 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  C  e.  CC )
2310zcnd 10740 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  CC )
2421, 22, 23mulassd 9401 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( B  x.  C )  x.  x )  =  ( B  x.  ( C  x.  x ) ) )
2520, 24breqtrd 4311 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  ( B  x.  ( C  x.  x ) ) )
268, 13zmulcld 10745 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( B  x.  y )  e.  ZZ )
27 dvdsmul1 13546 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( B  x.  y
)  e.  ZZ )  ->  A  ||  ( A  x.  ( B  x.  y ) ) )
287, 26, 27syl2anc 661 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  ( A  x.  ( B  x.  y ) ) )
297zcnd 10740 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  e.  CC )
3013zcnd 10740 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  CC )
3121, 29, 30mul12d 9570 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( B  x.  ( A  x.  y
) )  =  ( A  x.  ( B  x.  y ) ) )
3228, 31breqtrrd 4313 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  ( B  x.  ( A  x.  y ) ) )
33 dvds2add 13556 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( B  x.  ( C  x.  x )
)  e.  ZZ  /\  ( B  x.  ( A  x.  y )
)  e.  ZZ )  ->  ( ( A 
||  ( B  x.  ( C  x.  x
) )  /\  A  ||  ( B  x.  ( A  x.  y )
) )  ->  A  ||  ( ( B  x.  ( C  x.  x
) )  +  ( B  x.  ( A  x.  y ) ) ) ) )
3433imp 429 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  ( B  x.  ( C  x.  x )
)  e.  ZZ  /\  ( B  x.  ( A  x.  y )
)  e.  ZZ )  /\  ( A  ||  ( B  x.  ( C  x.  x )
)  /\  A  ||  ( B  x.  ( A  x.  y ) ) ) )  ->  A  ||  (
( B  x.  ( C  x.  x )
)  +  ( B  x.  ( A  x.  y ) ) ) )
357, 12, 15, 25, 32, 34syl32anc 1226 . . . . . 6  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  (
( B  x.  ( C  x.  x )
)  +  ( B  x.  ( A  x.  y ) ) ) )
3611zcnd 10740 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( C  x.  x )  e.  CC )
3714zcnd 10740 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( A  x.  y )  e.  CC )
3821, 36, 37adddid 9402 . . . . . 6  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( B  x.  ( ( C  x.  x )  +  ( A  x.  y ) ) )  =  ( ( B  x.  ( C  x.  x )
)  +  ( B  x.  ( A  x.  y ) ) ) )
3935, 38breqtrrd 4313 . . . . 5  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  ( B  x.  ( ( C  x.  x )  +  ( A  x.  y ) ) ) )
40 oveq2 6094 . . . . . 6  |-  ( ( C  gcd  A )  =  ( ( C  x.  x )  +  ( A  x.  y
) )  ->  ( B  x.  ( C  gcd  A ) )  =  ( B  x.  (
( C  x.  x
)  +  ( A  x.  y ) ) ) )
4140breq2d 4299 . . . . 5  |-  ( ( C  gcd  A )  =  ( ( C  x.  x )  +  ( A  x.  y
) )  ->  ( A  ||  ( B  x.  ( C  gcd  A ) )  <->  A  ||  ( B  x.  ( ( C  x.  x )  +  ( A  x.  y
) ) ) ) )
4239, 41syl5ibrcom 222 . . . 4  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( C  gcd  A )  =  ( ( C  x.  x )  +  ( A  x.  y ) )  ->  A  ||  ( B  x.  ( C  gcd  A ) ) ) )
4342rexlimdvva 2843 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C )
)  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  ( C  gcd  A )  =  ( ( C  x.  x )  +  ( A  x.  y ) )  ->  A  ||  ( B  x.  ( C  gcd  A ) ) ) )
446, 43mpd 15 . 2  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C )
)  ->  A  ||  ( B  x.  ( C  gcd  A ) ) )
45 dvdszrcl 13532 . . . . 5  |-  ( A 
||  ( B  x.  ( C  gcd  A ) )  ->  ( A  e.  ZZ  /\  ( B  x.  ( C  gcd  A ) )  e.  ZZ ) )
4645adantl 466 . . . 4  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( A  e.  ZZ  /\  ( B  x.  ( C  gcd  A ) )  e.  ZZ ) )
4746simpld 459 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  A  e.  ZZ )
4846simprd 463 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( B  x.  ( C  gcd  A ) )  e.  ZZ )
49 zmulcl 10685 . . . 4  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( B  x.  C
)  e.  ZZ )
5049adantr 465 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( B  x.  C )  e.  ZZ )
51 simpr 461 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  A  ||  ( B  x.  ( C  gcd  A ) ) )
52 simplr 754 . . . . . 6  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  C  e.  ZZ )
53 gcddvds 13691 . . . . . 6  |-  ( ( C  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( C  gcd  A )  ||  C  /\  ( C  gcd  A ) 
||  A ) )
5452, 47, 53syl2anc 661 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( ( C  gcd  A )  ||  C  /\  ( C  gcd  A )  ||  A ) )
5554simpld 459 . . . 4  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( C  gcd  A )  ||  C )
5652, 47gcdcld 13694 . . . . . 6  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( C  gcd  A )  e.  NN0 )
5756nn0zd 10737 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( C  gcd  A )  e.  ZZ )
58 simpll 753 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  B  e.  ZZ )
59 dvdscmul 13551 . . . . 5  |-  ( ( ( C  gcd  A
)  e.  ZZ  /\  C  e.  ZZ  /\  B  e.  ZZ )  ->  (
( C  gcd  A
)  ||  C  ->  ( B  x.  ( C  gcd  A ) ) 
||  ( B  x.  C ) ) )
6057, 52, 58, 59syl3anc 1218 . . . 4  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( ( C  gcd  A )  ||  C  ->  ( B  x.  ( C  gcd  A ) )  ||  ( B  x.  C ) ) )
6155, 60mpd 15 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( B  x.  ( C  gcd  A ) )  ||  ( B  x.  C ) )
62 dvdstr 13558 . . . 4  |-  ( ( A  e.  ZZ  /\  ( B  x.  ( C  gcd  A ) )  e.  ZZ  /\  ( B  x.  C )  e.  ZZ )  ->  (
( A  ||  ( B  x.  ( C  gcd  A ) )  /\  ( B  x.  ( C  gcd  A ) ) 
||  ( B  x.  C ) )  ->  A  ||  ( B  x.  C ) ) )
6362imp 429 . . 3  |-  ( ( ( A  e.  ZZ  /\  ( B  x.  ( C  gcd  A ) )  e.  ZZ  /\  ( B  x.  C )  e.  ZZ )  /\  ( A  ||  ( B  x.  ( C  gcd  A ) )  /\  ( B  x.  ( C  gcd  A ) )  ||  ( B  x.  C )
) )  ->  A  ||  ( B  x.  C
) )
6447, 48, 50, 51, 61, 63syl32anc 1226 . 2  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  A  ||  ( B  x.  C )
)
6544, 64impbida 828 1  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  ||  ( B  x.  C )  <->  A 
||  ( B  x.  ( C  gcd  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E.wrex 2711   class class class wbr 4287  (class class class)co 6086    + caddc 9277    x. cmul 9279   ZZcz 10638    || cdivides 13527    gcd cgcd 13682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-dvds 13528  df-gcd 13683
This theorem is referenced by:  odmulg  16048
  Copyright terms: Public domain W3C validator