MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmulcr Structured version   Unicode version

Theorem dvdsmulcr 13870
Description: Cancellation law for the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmulcr  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( M  x.  K )  ||  ( N  x.  K )  <->  M 
||  N ) )

Proof of Theorem dvdsmulcr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 zmulcl 10907 . . . . . 6  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  x.  K
)  e.  ZZ )
213adant2 1015 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  x.  K )  e.  ZZ )
3 zmulcl 10907 . . . . . 6  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  x.  K
)  e.  ZZ )
433adant1 1014 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  x.  K )  e.  ZZ )
52, 4jca 532 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  x.  K
)  e.  ZZ  /\  ( N  x.  K
)  e.  ZZ ) )
653adant3r 1225 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( M  x.  K )  e.  ZZ  /\  ( N  x.  K
)  e.  ZZ ) )
7 3simpa 993 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( M  e.  ZZ  /\  N  e.  ZZ ) )
8 simpr 461 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
9 zcn 10865 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  e.  CC )
10 zcn 10865 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  M  e.  CC )
119, 10anim12i 566 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ )  ->  ( x  e.  CC  /\  M  e.  CC ) )
12 zcn 10865 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
13 zcn 10865 . . . . . . . . . . . 12  |-  ( K  e.  ZZ  ->  K  e.  CC )
1413anim1i 568 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  K  =/=  0 )  -> 
( K  e.  CC  /\  K  =/=  0 ) )
15 mulass 9576 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  M  e.  CC  /\  K  e.  CC )  ->  (
( x  x.  M
)  x.  K )  =  ( x  x.  ( M  x.  K
) ) )
16153expa 1196 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  K  e.  CC )  ->  ( ( x  x.  M )  x.  K )  =  ( x  x.  ( M  x.  K ) ) )
1716adantrr 716 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  ( K  e.  CC  /\  K  =/=  0 ) )  -> 
( ( x  x.  M )  x.  K
)  =  ( x  x.  ( M  x.  K ) ) )
18173adant2 1015 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  ->  ( (
x  x.  M )  x.  K )  =  ( x  x.  ( M  x.  K )
) )
1918eqeq1d 2469 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  ->  ( (
( x  x.  M
)  x.  K )  =  ( N  x.  K )  <->  ( x  x.  ( M  x.  K
) )  =  ( N  x.  K ) ) )
20 mulcl 9572 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  M  e.  CC )  ->  ( x  x.  M
)  e.  CC )
21 mulcan2 10183 . . . . . . . . . . . . 13  |-  ( ( ( x  x.  M
)  e.  CC  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  -> 
( ( ( x  x.  M )  x.  K )  =  ( N  x.  K )  <-> 
( x  x.  M
)  =  N ) )
2220, 21syl3an1 1261 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  ->  ( (
( x  x.  M
)  x.  K )  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) )
2319, 22bitr3d 255 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  ->  ( (
x  x.  ( M  x.  K ) )  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) )
2411, 12, 14, 23syl3an 1270 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  M  e.  ZZ )  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( (
x  x.  ( M  x.  K ) )  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) )
25243expb 1197 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) ) )  ->  ( ( x  x.  ( M  x.  K ) )  =  ( N  x.  K
)  <->  ( x  x.  M )  =  N ) )
26253impa 1191 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) ) )  ->  ( ( x  x.  ( M  x.  K ) )  =  ( N  x.  K
)  <->  ( x  x.  M )  =  N ) )
27263coml 1203 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
( x  x.  ( M  x.  K )
)  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) )
28273expia 1198 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) ) )  ->  (
x  e.  ZZ  ->  ( ( x  x.  ( M  x.  K )
)  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) ) )
29283impb 1192 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( x  e.  ZZ  ->  ( ( x  x.  ( M  x.  K
) )  =  ( N  x.  K )  <-> 
( x  x.  M
)  =  N ) ) )
3029imp 429 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
( x  x.  ( M  x.  K )
)  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) )
3130biimpd 207 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
( x  x.  ( M  x.  K )
)  =  ( N  x.  K )  -> 
( x  x.  M
)  =  N ) )
326, 7, 8, 31dvds1lem 13852 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( M  x.  K )  ||  ( N  x.  K )  ->  M  ||  N ) )
33 dvdsmulc 13868 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( M  x.  K )  ||  ( N  x.  K
) ) )
34333adant3r 1225 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( M  ||  N  ->  ( M  x.  K
)  ||  ( N  x.  K ) ) )
3532, 34impbid 191 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( M  x.  K )  ||  ( N  x.  K )  <->  M 
||  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4447  (class class class)co 6282   CCcc 9486   0cc0 9488    x. cmul 9493   ZZcz 10860    || cdivides 13843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-recs 7039  df-rdg 7073  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-n0 10792  df-z 10861  df-dvds 13844
This theorem is referenced by:  mulgcddvds  14100  prmpwdvds  14277  4sqlem10  14320  sylow3lem4  16446  odadd1  16647  odadd2  16648  ablfacrp2  16908  ablfac1eu  16914  fsumdvdsdiaglem  23187  nn0prpwlem  29717  jm2.20nn  30543
  Copyright terms: Public domain W3C validator